[1] S. Abbas, M. Benchohra and J. Henderson, Existence and attractivity results for Hilfer fractional differential equations, J. Math. Sci. 243 (2019), 347–357.
[2] S. Abbas, M. Benchohra and J.R. Graef, Weak solutions to implicit differential equations involving the Hilfer fractional derivative, Nonlinear Dyn. Syst. Theory 18 (2018), no. 1, 1-–11.
[3] S. Abbas, M. Benchohra, J.-E. Lagreg, A. Alsaedi and Y. Zhou, Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type, Adv. Difference. Equ. 180 (2017), 1–14.
[4] S. Abbas, M. Benchohra, J.E. Lagreg and Y. Zhou, A survey on Hadamard and Hilfer fractional differential equations, Analysis and stability, Chaos Solitons Fractals 102 (2017), 47–71.
[5] B. Ahmadn and S.K. Ntouyas, Initial value problem of fractional order Hadamard-type functional differential equations, Electron. J. Differ. Equ. 77 (2015), 1–9.
[6] B. Ahmad and S.K. Ntouyas, Hilfer–Hadamard fractional boundary value problems with nonlocal mixed boundary conditions, Fractal Fractional 5 (2021), 195.
[7] R.P. Agarwal, S.K. Ntouyas, B. Ahmad and A.K. Alzahrani, Hadamard-type fractional functional differential equations and inclusions with retarded and advanced arguments, Adv. Difference. Equ. 2016 (2016), 92.
[8] Y. Arioua and N. Benhamidouche, Boundary value problem for Caputo-Hadamard fractional differential equations, Surv. Math. Appl. 12 (2017), 103-–115.
[9] S.P. Bhairat, Existence and continuation of solution of Hilfer fractional differential equations, J. Math. Model. 7 (2019), no. 1, 1–20.
[10] M. Benchohra S. Bouriah and J. Henderson, Nonlinear implicit Hadamard’s fractional differential equations with retarded and advanced arguments, Azer. J. Math. 8 (2018), no. 2.
[11] M. Benchohra, S. Bouriah and J.R. Graef, Boundary value problems for nonlinear implicit Caputo–HadamardType fractional differential equations with impulses, Mediterr. J. Math. 14 (2017), no. 206, 1–21.
[12] M. Benchohra, J. R. Graef, N. Guerraiche and S. Hamani, Nonlinear boundary value problems for fractional differential inclusions with Caputo-Hadamard derivatives on the half line, AIMS Math. 6 (2021), no. 6, 6278—6292.
[13] M. Benchohra, J. Lazreg and G. N’G´uer´ekata, Nonlinear implicit Hadamard’s fractional differential equations on Banach space retarded and advanced arguments, Int. J. Evol. Equ. 10 (2015), no. 3-4, 283—295.
[14] P.L. Butzer, A.A. Kilbas and J.J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl. 269 (2019), 1—27.
[15] A. Boutiara, K. Guerbati and M. Benbachir, Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces, AIMS Math. 5 (2019), no. 1, 259—272.
[16] Y.Y. Gambo, F. Jarad, D. Baleanu and T. Abdeljawad, On Caputo modification of the Hadamard fractional derivatives, Adv. Differ. Equ. 2014 (2014), no. 1, 1–12.
[17] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York 2003.
[18] M. Haoues, A. Ardjouni and A. Djoudi, Existence and uniqueness of solutions for the nonlinear retarded and advanced implicit Hadamard fractional differential equations with nonlocal conditions, nonlinear stud. 27 (2020), no. 2, 433–445.
[19] R. Hilfer, Threefold introduction to fractional derivatives, Anomalous Transport: Foundations and Applications, 2008, pp. 17—73.
[20] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Sc. Publ. Co., 2000.
[21] F. Jarad, T. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ. 2012 (2012), no. 1, Article 142, 8 pages.
[22] M.D. Kassim and N.E. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal. 2013 (2013), 1–12.
[23] A.A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc. 38 (2001), no. 6, 1191–1204.
[24] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of the Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier: Amsterdam, The Netherlands, 2006.
[25] K. Oldham and J. Spanier, The Fractional Calculus, Acad. Press, New York, 1974.
[26] D.S. Oliveira and E.C. Oliveira, Hilfer-Katugampola fractional derivative, eprint arXiv:1705.07733v1 [math.CA].2017.
[27] I. Podlubny, Fractional Differential Equations, in: Mathematics in Science and Engineering, 198, Acad. Press, New York, 1999.
[28] M.D. Qassim, K.M. Furati and N.E. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative, Abst. Appl. Anal. 2012 (2012).
[29] D. Qian, Z. Gong and C. Li, A generalized Gr¨onwall inequality and its application to fractional differential equations with Hadamard derivatives, Proc. the 3rd. Conf. on Nonlinear Sci. Complexity, Cankaya University, 2010.
[30] A.Y.A. Salamooni and D.D. Pawar, Existence and uniqueness of nonlocal boundary conditions for Hilfer–Hadamard-type fractional differential, Adv. Differ. Equ. 2021 (2021).
[31] A.Y.A. Salamooni and D.D. Pawar Existence and stability results for Hilfer–Katugampola-type fractional implicit differential equations with nonlocal conditions, J. Nonlinear Sci. Appl. 14 (2021), no. 3, 124-–138.
[32] A.Y.A. Salamooni and D.D. Pawar, Existence and uniqueness of boundary value problems for Hilfer-Hadamardtype fractional differential equations, Ganita 70 (2020), no. 2, 1-–16.
[33] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon Breach, Tokyo-Paris-Berlin, 1993.
[34] D. Vivek, K. Shah and K. Kanagarajan, Dynamical analysis of Hilfer–Hadamard type fractional pantograph equations via successive approximation, J. Taibah Univ. Sci. 13 (2019), no. 1, 225—230.
[35] D. Viveka, K. Kanagarajana and E.M. Elsayedb, Nonlocal initial value problems for implicit differential equations with Hilfer–Hadamard fractional derivative, Nonlinear Anal. Model. Control. 23 (2018), no. 3, 341—360.
[36] D. Vivek, K. Kanagrajan and E.M. Elsayed, Some existence and stability results for Hilfer fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math. 15 (2018).
[37] J.R. Wang, Ch. Zhu and M. Feckan, Solvability of fully nonlinear functional equations involving Erd´elyi-Kober fractional integrals on the unbounded interval, Optim. 63 (2014), 1235–1248.
[38] J.R. Wang and Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput. 266 (2015), 850–859.
[39] Y. Zhou. Basic theory of fractional differential equations. World Scientific, Singapore, 2014.