[1] A. Akg¨ul, K. Rajagopal, A. Durdu, M.A. Pala, O.F. Boyraz and M.Z. Yildiz, ¨ A simple fractional-order chaotic system based on memristor and memcapacitor and its synchronization application, Chaos Solitons Fractals 152 (2021), p. 111306.
[2] M. Aqil, K.-S. Hong and M.-Y. Jeong, Synchronization of coupled chaotic FitzHugh–Nagumo systems, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), no. 4, 1615–1627.
[3] R. Behinfaraz and M.A. Badamchizadeh, New approach to synchronization of two different fractional-order chaotic systems, Int. Symp. Artif. Intell. Signal Process. (AISP), IEEE, 2015.
[4] R. Behinfaraz and M.A. Badamchizadeh, Synchronization of different fractional order chaotic systems with timevarying parameter and orders, ISA Trans. 80 (2018), 399–410.
[5] R. Behinfaraz, S. Ghaemi and S. Khanmohammadi, Risk assessment in control of fractional-order coronary artery system in the presence of external disturbance with different proposed controllers, Appl. Soft Comput. 77 (2019), 290–299.
[6] J.C. Bezdek, Fuzziness vs. probability-again (!?), IEEE Trans. Fuzzy Syst. 2 (1994), no. 1, 1–3.
[7] S. Bhalekar and V. Daftardar-Gejji, Synchronization of different fractional order chaotic systems using active control, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), no. 11, 3536–3546.
[8] S.Y. Chiu, J.M. Ritchie, R.B. Rogart and D. Stagg, A quantitative description of membrane currents in rabbit myelinated nerve, J. Phys. 292 (1979), no. 1, 149–166.
[9] R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, MHS’95. Proc. Sixth Int. Symp. Micro Machine Human Sci., 1995, pp. 39–43.
[10] G. Feng and G. Chen, Adaptive control of discrete-time chaotic systems: a fuzzy control approach, Chaos Solitons Fractals 23 (2005), 459–467.
[11] T.A. Gennarelli, L.E. Thibault, R. Tipperman, G. Tomei, R. Sergot, M. Brown, W.L. Maxwell, D.I. Graham, J.H. Adams, A. Irvine and L.M. Gennarelli, Axonal injury in the optic nerve: a model simulating diffuse axonal injury in the brain, J. Neurosurgery 71 (1989), no. 2, 244–253.
[12] A. Kazemi, R. Behinfaraz and A. Rikhtegar Ghiasi, Accurate model reduction of large scale systems using adaptive multi-objective particle swarm optimization algorithm, Int. Conf. Mech. Syst. Control Engin. (ICMSC), IEEE, 2017, pp. 372–376.
[13] J.P. Keener, F.C. Hoppensteadt and J. Rinzel, Integrate-and-fire models of nerve membrane response to oscillatory input, SIAM J. Appl. Math. 41 (1981), no. 3, 503–517.
[14] S. Kumar, A.E. Matouk, H. Chaudhary and S. Kant, Control and synchronization of fractional-order chaotic satellite systems using feedback and adaptive control techniques, Int. J Adaptive Control Signal Process. 35 (2021), no. 4, 484–497.
[15] C.L. Kuo, T.H. Li and N. Guo, Design of a novel fuzzy sliding-mode control for magnetic ball levitation system, J. Intell. Robotic Syst. 42 (2005), no. 3, 295–316.
[16] C. Li, X. Liao and J. Yu, Synchronization of fractional order chaotic systems, Phys. Rev. E. 68 (2003), no. 6, 067203.
[17] G. Peng, Synchronization of fractional order chaotic systems, Phys. Lett. A. 363 (2007), no. 5-6, 426–432.
[18] K. Tanaka, T. Ikeda and H.O. Wang, A unified approach to controlling chaos via LMI-based fuzzy control system design, IEEE Trans. Circuits Syst. I: Fund. Theory Appl. 45 (1998), no. 10, 1021–1040.
[19] H. Wang, Z. Han, W. Zhang and Q. Xie, Chaotic synchronization and secure communication based on descriptor observer, Nonlinear Dyn. 57 (2009), 69–73.
[20] X. Wu, H. Bao and J. Cao, Finite-time inter-layer projective synchronization of Caputo fractional-order two-layer networks by sliding mode control, J. Franklin Instit. 358 (2021), no. 1, 1002–1020.
[21] Y.J. Xue and S.Y. Yang, Synchronization of generalized Henon map by using adaptive fuzzy controller, Chaos Solitons Fractals 17 (2003), no. 4, 717–722.
[22] R.R. Yager and L.A. Zadeh, An introduction to Fuzzy logic applications in intelligent systems, Springer US, 1992.
[23] L.A. Zadeh, Fuzzy logic, IEEE Comput. 21 (1988), no. 4, 83–93.
[24] P. Zhou and W. Zhu, Function projective synchronization for fractional-order chaotic systems, Nonlinear Anal.: Real World Appl. 12 (2011), no. 2, 811–816.