[1] A. Asliyan, K. G¨unel and T. Yakhno,Syllable Based Speech Recognition Using Dynamic Time Warping, Academic Informatics, Canakkale Onsekiz Mart University, Canakkale, 2008.
[2] M. Asadolahzade Kermanshahi and M.M. Homayounpour, Improving phoneme sequence recognition using phoneme duration, J. AI and Data Min. 7 (2018), no. 1, 137–147.
[3] M. Bijankhan, J. Shcikhzadegan, M.R. Rohani, Y. Samareh, C. Lucas and M. Tebyani, FARSDAT- The speech database of Farsi spoken language, Proc. Aust. Conf. Speech Sci. Technol. 2 (1994), 826–831.
[4] M. Farsinejad, B. Zamani Dehkordi and A. Akbari, Proposing a two-stage sound detector method based on the hidden Markov model, The fourteenth Ann. Nat. Conf. Iran. Comput. Assoc., Amirkabir University of Technology, 2007.
[5] J.G. Fiscus, J. Ajot, J.S. Garofolo and G. Doddingtion, Results of the 2006 spoken tcrm detection evaluation, Proc. ACM SIGIR Work, 2006, pp. 51–55.
[6] J.S. Garofolo, C.G.P. Auzance and E.M. Voorhees, The TREC spoken document retrieval track: A success story, Proc. TREC-8 8940 (1999), no. 500-246, 109–130.
[7] A. Harma, A comparison of warped and conventional linear predictive coding, IEEE Trans. Speech Audio Process. 9 (2001), no. 5, 579–588.
[8] A. Harma, Linear predictive coding with modified filter structures, IEEE Trans. Speech Audio Process. 9 (2001), no. 8, 769–777.
[9] M. M. Homayunpour and S. M. Mousavi, Generation of Persian speech synthesis parameters using hidden Markov and decision tree models, J. Comput. Sci. Engin. 2 (2007), no. 1–3.
[10] R.J. Jones, S. Downey and J.S. Mason, Continuous speech recognition using syllables, Proc. Eurospeech 3 (1997), 1171–1174.
[11] M. Khanzadi, H. Veisi, R. Alinaghizade and Z. Soleymani, Persian phoneme and syllable recognition using recurrent neural networks for phonological awareness assessment, J. Artif. Intell. Data Min. 10 (2022), no. 1, 117–126.
[12] J. Kruskall and M. Liberman, The symmetric time warping problem: From continuous to discrete. In Time Warps, String Edits and Macromolecules: The Theory and Practice of Sequence Comparison, Addison-Wesley Publishing Co., 1983.
[13] L. Lee, J. Glass, H. Lee and C. Chan,Spoken content retrival beyond cascading speeech rcognition whit text retrival, IEEE/ACM trans. Audio Speech Lang. Process. 23 (2015), no. 9, 1389–1420.
[14] E. Mengusoglu and O. Derro, Turkish LVCSR: Database preparation and language modeling for an agglutinative language, ICASSP’2001, Student Forum, May, Salt-Lake City, 2001.
[15] C.S. Myers, L.R. Rabiner and A.E. Rosenberg, Performance tradeoffs in dynamic time warping algorithms for isolated word recognition, IEEE Trans. Acous. Speech Sig. Process. ASPP-28 (1980), no. 6, 623–635.
[16] K.K. Paliwal, A. Agarwal and S.S. Sinha, A modification over Sakoe and Chiba’s dynamic time warping algorithm for isolated word recognition, Signal Process. 4 (1982), no. 4, 329–333.
[17] J.G. Proakis, and D.G. Manolakis, Digital Signal Processing: Principles and Application, Prentice-Hall, Upper Saddle River, NJ, 1996.
[18] L. Rabiner and B.H. Juang, Fundamentals of Speech Recognition, Prenctice-Hall, Englewood Cliffs, NJ, 1993.
[19] A.E. Rosenberg, L.R. Rabiner, S.E. Levinson and J.G. Wilpon, A preliminary study on the use of demisyllables in automatic speech recognition, Conf. Rec. Int. Conf. Acous. Speech Sig. Process. GA, 1981, pp. 967–970.
[20] F. Salehi, Speech recognition using methods of hidden Markov models and artificial neural networks and hybrid speech recognition systems, Nat. Conf. Engin. Sci. New Ideas, 2013.
[21] Y. Samere, Phonology of the Persian language, University Publishing Center, Second Edition, 1368.
[22] I. Shafran, Clustering wide context and HMM topologies for spontaneous speech recognition, Ph.D. Thesis, University of Washington, 2001.
[23] J. Sheikh Zadegan, Ranking of persian speech phonemes from the point of view of efficiency in speaker recognition, J. Languge Res. 7 (2015), no. 1, 77–96.
[24] T. Svendsen, K.K. Paliwal, E. Harborg and P.O. Husoy, A modified acoustic sub-word unit based speech recognizer, Proc. IEEE Int. Conf. Acoustics Speech Signal Process. 1989, pp. 108–111.
[25] J. Tejedor, D.T. Toledano, P. Lopez-Otero, L. Docio-Fernandez, L. Serrano, I. Hernaez, A. Coucheiro-Limeres, J. Ferreiros, J. Olcoz and J. Llombart, AlBAYZIN 2016 spoken term detection evaluation: An international open competitive evaluation in Spanish, EURASIA J, Audio. Speech, Music Process. 2017 (2017), no. 1, 1–23.
[26] J. Trmal, M. Wiesner, V. Peddinti, X. Zhang, P. Ghahremani, Y. Wang, V. Manohar, H. Xu, D. Povey and S. Khudanpur, The Kaldi open KWS system: improving low resource keyword search, Interspeech, 2017, pp. 3597–3601.
[27] H. Veisey, S.A. Qureshi and A. Bastan Fard, Recognition of speech phrases for Farsi news of the Islamic Republic of Iran, Signal Data Process. Quart. 4 (2019), no. 46.
[28] T. Zoghi and M.M. Homayounpour, Adaptive windows convolutional neural network for speech recognition, Signal Data Process. Quart. 3 (2017), no. 37.