[1] A.H. Al-Mohy and N.J. Higham, A new scaling and squaring algorithm for the matrix exponential, SIAM J. Matrix Anal. Appl. 31 (2010), 970–989.
[2] A.H. Al-Mohy, N.J. Higham and S.D. Relton, New algorithms for computing the matrix sine and cosine separately or simultaneously, SIAM J. Sci. Comput. 37 (2015), 56–87.
[3] P. Bader, S. Blanes and F. Casas, Computing the matrix exponential with an optimized Taylor polynomial approximation, Math. 7 (2019), 1174.
[4] J.M. Carnicer and J.M. Pe˜na, Shape preserving representations and optimality of the Bernstein basis, Adv. Comput. Math. 1 (1993), no. 2, 173–196.
[5] E. Defez and L. J´odar, Some applications of Hermite matrix polynomials series expansions, J. Comput. Appl. Math. 99 (1998), 105–117.
[6] E. Defez, J. Sastre, J. IbIb´a˜nez and P. Ruiz, Computing matrix functions arising in engineering models with orthogonal matrix polynomials, Math. Comput. Modell. 57 (2013), 1738–1743.
[7] E. Defez, J. Sastre, J. IbIb´a˜nez and P.A. Ruiz, Computing matrix functions solving coupled differential models, Math. Comput. Modell. 50 (2009), 831–839.
[8] M. Dehghan and A. Taleei, Numerical solution of nonlinear Schr¨odinger equation by using time-space pseudospectral method, Numer. Meth. Part. Differ. Equ. 26 (2010), no. 4, 979–992.
[9] R.T. Farouki, The Bernstein polynomial basis: A centennial retrospective, Comput. Aided Geom. Design 29 (2012), 379–419.
[10] N.J. Higham and A.H. Al-Mohy, Computing matrix functions, Acta Numer. 19 (2010), 159–208.
[11] J.H. Hubbard and B.H. West, Differential equations: A dynamical systems approach: Ordinary differential equations, Springer-Verlag, New York, 2013.
[12] E. Kreyszig, Introductory functional analysis with applications,Wiley, New York, 1978.
[13] X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal. 47 (2009), 2108–2131.
[14] E. Liz, Classroom note: A note on the matrix exponential, SIAM Rev. 40 (1998), 700–702.
[15] I.E. Leonard, The matrix exponential, SIAM Rev. 38 (1996), 507–512.
[16] A. Saadatmandi and M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method, Numer. Meth. Part. Differ. Equ. 26 (2010), 239–252.
[17] J. Sastre, J. IbIb´a˜nez and E. Defez, Boosting the computation of the matrix exponential, Appl. Math. Comput. 340 (2019), 206–220.
[18] J. Sastre, J. Ib´a˜nez, P. Alonso-Jord´a, J. Peinado and E. Defez, Fast Taylor polynomial evaluation for the computation of the matrix cosine, J. Comput. Appl. Math. 354 (2019), 641–650.
[19] S.M. Serbin and S.A. Blalock, An algorithm for computing the matrix cosine, SIAM J. Sci. Statist. Comput. 1 (1980), no. 2, 198–204.
[20] M. Seydaoˇglu, P. Bader, S. Blanes and F. Casas, Computing the matrix sine and cosine simultaneously with a reduced number of products, Appl. Numer. Math. 163 (2021), 96–107.
[21] R.B. Sidje, Expokit: A software package for computing matrix exponentials, ACM Trans Math Software 24 (1998), 130–156.
[22] C. Moler and C.V. Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev. 45 (2003), 3–49.
[23] J.A. Wood, The chain rule for matrix exponential functions, College Math. J. 35 (2004), 220–222.
[24] H.D. Vo and R.B. Sidje, Approximating the large sparse matrix exponential using incomplete orthogonalization and Krylov subspaces of variable dimension, Numer. Linear Algebra Appl. 24 (2017), 1–13.
[25] S.A. Yousefi and M. Behroozifar, Operational matrices of Bernstein polynomials and their applications, Int. J. Syst. Sci. 41 (2010), 709–716.
[26] S.A. Yousefi, M. Behroozifar and M. Dehghan, The operational matrices of Bernstein polynomials for solving the parabolic equation subject to specification of the mass, J. Comput. Appl. Math. 235 (2011), 5272–5283.