[1] M. Beiglb¨ock, V. Bergelson, N. Hindman and D. Strauss Multiplicative structures in additively large sets, J. Combin. Theory Ser. A 113 (2006), no. 7, 1219—1242.
[2] M. Beiglb¨ock, V. Bergelson, N. Hindman and D. Strauss, Some new results in multiplicative and additive Ramsey theory, Trans. Amer. Math. Soc. 360 (2008), no. 2, 819—847.
[3] V. Bergelson Multiplicatively large sets and ergodic Ramsey theory, Israel J. Math. 148 (2005), 23—40.
[4] V. Bergelson, Ergodic Ramsey theory, logic and combinatorics (Arcata, Calif., 1985), Contemp. Math. Amer. Math. Soc. 67 (1987), 63—87.
[5] V. Bergelson, H. Furstenberg and R. McCutcheon, IP-sets and polynomial recurrence, Ergodic Theory Dynam. Syst. 16 (1996), no. 5, 963—974.
[6] V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden’s and Szemer´edi’s theorems, J. Amer. Math. Soc. 9 (1996), 725–753.
[7] A. Brauer, Uber Sequenzen von Potenzresten, ¨ Wiss. Berlin Kl. Math. Phys. Tech. (1928), 9–16.
[8] W. Deuber, Partitionen und lineare Gleichungssysteme, Math. Z. 133 (1973), 109—123.
[9] N. Frantzikinakis and B. Host, Higher order Fourier analysis of multiplicative functions and applications, J. Amer. Math. Soc. 30 (2017), no. 1, 67–157.
[10] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemer´edi on arithmetic progressions, J. Anal. Math. 31 (1977), 204—256.
[11] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, N.J., 1981.
[12] N. Hindman and D. Strauss, Algebra in the Stone-Cech Compactification: Theory and Application, ˇ second edition, de Gruyter, Berlin, 2011.
[13] R. McCutcheon A variant of the density Hales-Jewett theorem, Bull. Lond. Math. Soc. 42 (2010), no. 6, 974—980.
[14] J. Moreira, Monochromatic sums and products in N, Ann. Math. 185 (2017), 1069–1090.
[15] R. Rado, Studien zur kombinatorik, Math. Zeit. 36 (1933), 424–470.
[16] A. S´ark¨ozy, On difference sets of sequences of integers. I, Acta Math. Acad. Sci. Hungar. 31 (1978), no. 1–2, 125—149.
[17] I. Schur, Uber die Kongruenz $x^m + y^m\equiv z^m(mod p)$, Jahresbericht Deutschen Math. Verein. 25 (1916), 114—117.
[18] B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw. Arch. Wisk. 15 (1927), 212—216.