[1] N. Aguila-Camacho, M.A. Duarte-Mermoud, and J.A. Gallegos, Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), no. 9, 2951–2957.
[2] M.M. Al-Sawalha and M.S.M. Noorani, Adaptive reduced-order anti-synchronization of chaotic systems with fully unknown parameters, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), no. 10, 3022–3034.
[3] M.M. Al-sawalha and M.S.M. Noorani, Chaos reduced-order anti-synchronization of chaotic systems with fully unknown parameters, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), no. 4, 1908–1920.
[4] B. Bandyopadhyay and S. Kamal, Stabilization and control of fractional order systems: a sliding mode approach, vol. 317, Springer, 2015.
[5] M. Boutayeb and H. Darouach, M.and Rafaralahy, Generalized state-space observers for chaotic synchronization and secure communication, IEEE Trans. Circuits Syst. I: Fund. Theory Appl. 49 (2002), no. 3, 345–349.
[6] D. Chen, R. Zhang, X. Ma, and S. Liu, Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme, Nonlinear Dyn. 1 (2012), no. 69, 35–55.
[7] W.-C. Chen, Nonlinear dynamics and chaos in a fractional-order financial system, Chaos Solitons Fractals 36 (2008), no. 5, 1305–1314.
[8] C.-J. Cheng, Robust synchronization of uncertain unified chaotic systems subject to noise and its application to secure communication, Appl. Math. Comput. 219 (2012), no. 5, 2698–2712.
[9] K.M. Cuomo, A.V. Oppenheim, and S.H. Strogatz, Synchronization of lorenz-based chaotic circuits with applications to communications, IEEE Trans. Circuits Syst. II: Analog Digital Signal Process. 40 (1993), no. 10, 626–633.
[10] S. Dadras and H.R. Momeni, Control of a fractional-order economical system via sliding mode, Phys. A: Statistic. Mech. Appl. 389 (2010), no. 12, 2434–2442.
[11] M.-F. Danca, R. Garrappa, W.K.S. Tang, and G. Chen, Sustaining stable dynamics of a fractional-order chaotic financial system by parameter switching, Comput. Math. Appl. 66 (2013), no. 5, 702–716.
[12] H. Dedieu, M.P. Kennedy, and M. Hasler, Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing chua’s circuits, IEEE Trans. Circuits Syst. II: Analog Digital Signal Process. 40 (1993), no. 10, 634–642.
[13] P.Y. Dousseha, C. Ainamona, C.H. Miwadinoua, A.V. Monwanoua, and J.B. Chabi-Oroua, Chaos control and synchronization of a new chaotic financial system with integer and fractional order, J. Nonlinear Sci. Appl. 14 (2021), no. 6.
[14] L. Fang, T. Li, Z. Li, and R. Li, Adaptive terminal sliding mode control for anti-synchronization of uncertain chaotic systems, Nonlinear Dyn. 74 (2013), no. 4, 991–1002.
[15] A. Hajipour and H. Tavakoli, Analysis and circuit simulation of a novel nonlinear fractional incommensurate order financial system, Optik 127 (2016), no. 22, 10643–10652.
[16] M.F. Haroun and T.A. Gulliver, A new 3d chaotic cipher for encrypting two data streams simultaneously, Nonlinear Dyn. 81 (2015), no. 3, 1053–1066.
[17] T.T. Hartley and C.F. Lorenzo, Dynamics and control of initialized fractional-order systems, Nonlinear Dyn. 29 (2002), no. 1, 201–233.
[18] R. Hilfer, Applications of fractional calculus in physics, World scientific, 2000.
[19] M. Ichise, Y. Nagayanagi, and T. Kojima, An analog simulation of non-integer order transfer functions for analysis of electrode processes, J. Electroanal. Chem. Interf. Electrochem. 33 (1971), no. 2, 253–265.
[20] W. Jawaada, M.S.M. Noorani, and M.M. Al-sawalha, Robust active sliding mode anti-synchronization of hyperchaotic systems with uncertainties and external disturbances, Nonlinear Anal.: Real World Appl. 13 (2012), no. 5, 2403–2413.
[21] A. Khan and A. Tyagi, Disturbance observer-based adaptive sliding mode hybrid projective synchronisation of identical fractional-order financial systems, Pramana 90 (2018), no. 5, 1–14.
[22] L.J. Kocarev, K.S. Halle, K. Eckert, L.O. Chua, and U. Parlitz, Experimental demonstration of secure communications via chaotic synchronization, Int. J. Bifurcat. Chaos 2 (1992), no. 03, 709–713.
[23] R.C. Koeller, Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Mech. 51 (1984), no. 2, 299–307.
[24] Nick Laskin, Fractional market dynamics, Phys. A: Statistic. Mech. Appl. 287 (2000), no. 3-4, 482–492.
[25] C. Li and W. Deng, Remarks on fractional derivatives, Appl. Math. Comput. 187 (2007), no. 2, 777–784.
[26] H.-L. Li, Y.-L. Jiang, and Z.-L. Wang, Anti-synchronization and intermittent anti-synchronization of two identical hyperchaotic chua systems via impulsive control, Nonlinear Dyn. 79 (2015), no. 2, 919–925.
[27] R. Mart´ınez-Guerra, J.J.M. Garc´ıa, and S.M.D. Prieto, Secure communications via synchronization of liouvillian chaotic systems, J. Franklin Inst. 353 (2016), no. 17, 4384–4399.
[28] D. Matignon, Stability results for fractional differential equations with applications to control processing, Comput. Engin. Syst. Appl., vol. 2, Citeseer, 1996, pp. 963–968.
[29] P. Muthukumar, P. Balasubramaniam, and K. Ratnavelu, A novel cascade encryption algorithm for digital images based on anti-synchronized fractional order dynamical systems, Multimedia Tools Appl. 76 (2017), no. 22, 23517– 23538.
[30] B. Naderi and H. Kheiri, Exponential synchronization of chaotic system and application in secure communication,Optik 127 (2016), no. 5, 2407–2412.
[31] B. Naderi, H. Kheiri, A. Heydari, and R. Mahini, Optimal synchronization of complex chaotic t-systems and its
application in secure communication, J. Control Autom. Electric. Syst. 27 (2016), no. 4, 379–390.
[32] U. Parlitz, L.O. Chua, L.J. Kocarev, K.S. Halle, and A. Shang, Transmission of digital signals by chaotic synchronization, Int. J. Bifurc. Chaos 2 (1992), no. 04, 973–977.
[33] M. Srivastava, S. Agrawal, and S. Das, Reduced-order anti-synchronization of the projections of the fractional order hyperchaotic and chaotic systems, Open Phys. 11 (2013), no. 10, 1504–1513.
[34] M. Srivastava, S.P. Ansari, S.K. Agrawal, S. Das, and A.Y.T. Leung, Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method, Nonlinear Dyn. 76 (2014), no. 2, 905–914.
[35] O.I. Tacha, J.M. Munoz-Pacheco, E. Zambrano-Serrano, I.N. Stouboulos, and V.-T. Pham, Determining the chaotic behavior in a fractional-order finance system with negative parameters, Nonlinear Dyn. 94 (2018), no. 2, 1303–1317.
[36] H. Taghvafard and G.H. Erjaee, Phase and anti-phase synchronization of fractional order chaotic systems via active control, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), no. 10, 4079–4088.
[37] C. Tao and X. Liu, Feedback and adaptive control and synchronization of a set of chaotic and hyperchaotic systems, Chaos Solitons Fractals 32 (2007), no. 4, 1572–1581.
[38] S. Wang, S. He, A. Yousefpour, H. Jahanshahi, R. Repnik, and M. Perc, Chaos and complexity in a fractional-order financial system with time delays, Chaos Solitons Fractals 131 (2020), 109521.
[39] X. Wang and M. Wang, Adaptive synchronization for a class of high-dimensional autonomous uncertain chaotic systems, Int. J. Modern Phys. C 18 (2007), no. 03, 399–406.
[40] Z Wang and X. Huang, Synchronization of a chaotic fractional order economical system with active control, Procedia Engin. 15 (2011), 516–520.
[41] Z. Wang, X. Huang, and H. Shen, Control of an uncertain fractional order economic system via adaptive sliding mode, Neurocomput. 83 (2012), 83–88.
[42] B. Xin and J. Zhang, Finite-time stabilizing a fractional-order chaotic financial system with market confidence, Nonlinear Dyn. 79 (2015), no. 2, 1399–1409.
[43] Y. Xu, H. Wang, Y. Li, and B. Pei, Image encryption based on synchronization of fractional chaotic systems, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), no. 10, 3735–3744.
[44] V.K. Yadav, S.K. Agrawal, M. Sirvestava, and S. Das, Phase and anti-phase synchronizations of fractional order hyperchaotic systems with uncertainties and external disturbances using nonlinear active control method, Int. J. Dyn. Control 5 (2017), 259–268.
[45] T. Yang and L.O. Chua, Secure communication via chaotic parameter modulation, IEEE Trans. Circuits Syst. I: Fund. Theory Appl. 43 (1996), no. 9, 817–819.
[46] F. Yu and C. Wang, Secure communication based on a four-wing chaotic system subject to disturbance inputs, Optik 125 (2014), no. 20, 5920–5925.
[47] L. Yuan, S. Zheng, and Z. Alam, Dynamics analysis and cryptographic application of fractional logistic map, Nonlinear Dyn. 96 (2019), no. 1, 615–636.
[48] Z. Zhang, J. Zhang, F. Cheng, and F. Liu, A novel stability criterion of time-varying delay fractional-order financial systems based a new functional transformation lemma, Int. J. Control Autom. Syst. 17 (2019), no. 4, 916–925.