[1] H.T. Banks, B.M. Lewis and H.T. Tran, Nonlinear feedback controllers and compensators: a state-dependent Riccati equation approach, Comput. Optim. Appl. 37 (2007), no. 2, 177–218.
[2] Y. Batmani and H. Khaloozadeh, Optimal chemotherapy in cancer treatment: state dependent Riccati equation control and extended Kalman filter, Optim. Control Appl. Meth. 34 (2013), no. 5, 562–577.
[3] Z. Bo and D.C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations, Int. J. Eng. Sci. 37 (1990), no. 9, 1089–1140.
[4] V. Brailovski, F. Trochu and G. Daigneault, Temporal characteristics of shape memory linear actuators and their application to circuit breakers, Mater. Des. 17 (1996), no. 3, 151–158.
[5] S.M. Dutta and F.H. Ghorbel, Differential hysteresis modeling of a shape memory alloy wire actuator, IEEE/ASME Trans. Mechatronics 10 (2005), no. 2, 189–197.
[6] M.H. Elahinia and H. Ashrafiuon, Nonlinear control of a shape memory alloy actuated manipulator, J. Vib. Acoust 124 (2002), no. 4.
[7] D. Hughes and J.T. Wen, Preisach modeling of piezoceramic and shape memory alloy hysteresis, Smart Mater. Struct. 6 (1997), no. 3, 287–300.
[8] N. Kha and K. Ahn, Position control of shape memory alloy actuators by using self Tuning fuzzy PID controller, 1ST IEEE Conf. Ind. Electron. Appl., 2006, pp. 1-–5.
[9] N.B. Kha, K.K. Ahn, Y.J. Yum, S.M.M. Rahman and J.H. Son, Internal model control for shape memory alloy actuators using fuzzy based preisach model, Int. Conf. Mechatron. Autom., 2007, pp. 2575–2580.
[10] J. Li and H. Tian, Position control of SMA actuator based on inverse empirical model and SMC-RBF compensation, Mech. Syst. Signal Process. 108 (2018), 203–215.
[11] N. Ma and G. Song, Control of shape memory alloy actuator using pulse width modulation, Smart Mater. Struct. 12 (2003), no. 5, 712–719.
[12] D.R. Madill and D. Wang, Modeling and L/sub 2/-stability of a shape memory alloy position control system, IEEE Trans. Control Syst. Technol. 6 (1998), no. 4, 473–481.
[13] J. Mohd Jani, M. Leary, A. Subic and M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Mater. Des. 56 (2014), 1078–1113.
[14] A. Pai, M. Riepold and A. Tr¨achtler, Model-based precision position and force control of SMA actuators with a clamping application, Mechatronics 50 (2018), 303–320.
[15] H. Pang and T. Liu, Optimal control for a class of affine nonlinear systems based on SDRE and Improved Newton Method, 24th Chinese Control and Decision Conference (CCDC), 2012, no. 1, pp. 2425–2429.
[16] N.T. Tai and K.K. Ahn, Output feedback direct adaptive controller for a SMA actuator with a kalman filter, IEEE Trans. Control Syst. Technol. 20 (2012), no. 4, 1081–1091.
[17] A. Villoslada et al., Position control of a shape memory alloy actuator using a four-term bilinear PID controller, Sensors Actuators A Phys. 236 (2015), 257–272.
[18] G. Webb, L. Wilson, D. Lagoudas and O. Rediniotis, Adaptive control of shape memory alloy actuators for underwater biomimetic applications, AIAA J. 38 (2000), no. 2, 325–334.
[19] G.V. Webb, D.C. Lagoudas and A.J. Kurdila, Hysteresis modeling of SMA actuators for control applications, J. Intell. Mater. Syst. Struct. 9 (1998), no. 6, 432–448.
[20] M.R. Zakerzadeh and H. Sayyaadi, Precise position control of shape memory alloy actuator using inverse hysteresis model and model reference adaptive control system, Mechatronics 23 (2013), no. 8, 1150–1162.