[1] E. Ansari-piri and N. Eghbali, Almost n-multiplicative maps, Afr. J. Math. Comput. Sci. Res. 5 (2012), 200–203.
[2] E. Ansari-piri, H. Shayanpour and Z. Heidarpour, Approximately n-multiplicative and approximately additive functions in normed algebras, Bull. Math. Anal. Appl. 7 (2015), no. 1, 12–19.
[3] J. Braˇciˇc and M.S. Moslehian, On automatic continuity of 3-homomorphisms on Banach algebras, Bull. Malays. Math. Sci. Soc. 30 (2007),195–200.
[4] S.S. Chang, Y.J. Cho and S.M. Kang, Nonlinear operator theory in probabilistic metric spaces, New York, Nova Science Publishers, Inc, 2001.
[5] S.S. Chang, B.S. Lee, Y.J. Cho, Y.Q. Chen, S.M. Kang and J.M. Jung, Generalized contraction mapping principle and differential equations in probabilistic metric spaces, Proc. Am. Math. Soc. 124 (1996), 2367–2376.
[6] H.G. Dales, Banach algebras and automatic continuity, London Mathematical Society, Monograph 24, Clarendon Press, Oxford, 2000.
[7] M.S. El Naschie, Fuzzy dodecahedron topology and E-infinity spacetimes as a model for quantum physics, Chaos Solitons Fractals 30 (2006), no. 5, 1025–1033.
[8] M.S. El Naschie, On gauge invariance, dissipative quantum mechanics and self-adjoint sets, Chaos Solitons Fractals 32 (2007), no. 2, 271–273.
[9] M.S. El Naschie, P-Adic analysis and the transfinite E8 exceptional Lie symmetry group unification, Chaos Solitons Fractals 38 (2008), no. 3, 612–614.
[10] M. Eshaghi Gordji, A. Jabbari and E. KarapinarAutomatic continuity of n-homomorphisms on Banach algebras, Bull. Iran. Math. Soc. 41 (2015), no. 5, 1207–1271.
[11] M. Fragoulopoulou, Topological algebras with involution, Elsevier, 2005.
[12] W. Gahler and S. Gahler, Contributions to fuzzy analysis, Fuzzy Sets Syst. 105 (1999), 201–224.
[13] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 125 (1989), 385–389.
[14] O. Hadˇzi´c and E. Pap, Fixed point theory in probabilistic metric spaces, Kluwer Academic Publishers, Dordrecht, 2001.
[15] Z. Heidarpour, E. Ansari-piri, H. Shayanpour and A. Zohri, A class of certain properties of approximately n-multiplicative maps between locally multiplicatively convex algebras, Int. J. Nonlinear Anal. Appl. 9 (2018), no. 2, 111–116.
[16] S. Hejazian, M. Mirzavaziri and M. S. Moslehian, n-Homomorphisms, Bull. Iran. Math. Soc. 31 (2005), 13–23.
[17] T.G. Honary and H. Shayanpour, Automatic continuity of n-homomorphisms between Banach algebras, Quaest. Math. 33 (2010), 189–196.
[18] T.G. Honary and H. Shayanpour, Automatic continuity of n-homomorphisms between topological algebras, Bull. Aust. Math. Soc. 83 (2011), 389–400.
[19] T.G. Honary, M.N. Tavani and H. Shayanpour, Automatic continuity of n-homomorphisms between Frechet algebras, Quaest. Math. 34 (2011), 265–274.
[20] R.A.J. Howey, Approximately multiplicative functionals on algebras of smooth functions, J. London Math. Soc. 68 (2003), 739–752.
[21] T. Husain, Multiplicative functionals on topological algebras, Pitman Books Limited, Boston, London, Melbourne, 1983.
[22] J. Im Kang and R. Saadati, Approximation of homomorphisms and derivations on non-Archimedean random Lie C*-algebras via fixed point method, J. Ineq. Appl. 2012 (2012), 251, 1–10. [23] K. Jarosz, Almost multiplicative functionals, Studia Math. 124 (1997), no. 1, 37–58.
[24] K. Jarosz, Perturbations of Banach algebras, Lecture Notes in Mathematics, Vol. 1120 Springer-Verlag, Berlin, 1985.
[25] B.E. Johnson, Approximately multiplicative functionals, J. London Math. Soc. 2 (1986), 489–510.
[26] B.E. Johnson, Approximately multiplicative maps between Banach algebras, J. London Math. Soc. 37 (1988), no. 2, 294–316.
[27] A. Mallios, Topological Algebras, North Holland, 1986.
[28] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. USA 28 (1942) 535–537.
[29] E.A. Michael, Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc. 11 (1952), 1–82.
[30] A.K. Mirmostafaee, Perturbation of generalized derivations in fuzzy Menger normed algebras, Fuzzy Sets Syst. 195 (2012), 109—117.
[31] Ch. Park, M.E. Gordji, and R. Saadati, Random homomorphisms and random derivations in random normed algebras via fixed point method, J. Ineq. Appl. 2012 (2012), 194, 1–10.
[32] Ch. Park, S.Y. Jang and R. Saadati, Fuzzy approximate of homomorphisms, J. Comp. Anal. Appl. 14 (2012), no.1, 833–841.
[33] E. Park and J. Trout, On the nonexistence of nontrivial involutive n-homomorphisms of C*-algebras, Trans. Am. Math. Soc. 361 (2009), 1949–1961.
[34] R. Saadati and Ch. Park, Approximation of derivations and the superstability in random Banach ∗-algebras, Adv. Diff. Equ. 418 (2018), 1–12.
[35] K.P.R. Sastry, G.A. Naidu, V.M. Latha, S.S.A. Sastri and I.L. Gayatri, Products of Menger probabilistic normed spaces, Gen. Math. Notes 2 (2011), no. 7, 15–23.
[36] B. Schweizer and A. Sklar, Probabilistic metric spaces, P. N. 275 North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co. New York 1983.
[37] P. ˇSemrl, Almost multiplicative functions and almost linear multiplicative functionals, Aeq. Math. 63 (2002), 180–192.
[38] P. ˇSemrl, Non-linear perturbations of homomorphisms on C(X), Quart. J. Math. Oxford. 50 (1999), 87–109.
[39] H. Shayanpour, E. Ansari-piri, Z. Heidarpor and A. Zohri, Approximately n-multiplicative functionals on Banach algebras, Mediterr. J. Math. 13 (2016), 1907–1920.
[40] H. Shayanpour, T.G. Honary and M.S. Hashemi, Certain properties of n-characters and n-homomorphisms on topological algebras, Bull. Malays. Math. Sci. Soc. 38 (2015), 985–999.
[41] R. Thakur and S.K. Samanta, Fuzzy Banach algebra, J. Fuzzy Math. 18 (2010), no. 3, 687–696.
[42] R. Thakur and S.K. Samanta, Fuzzy Banach algebra with Felbin’s type fuzzy norm, J. Fuzzy Math. 18 (2011), no. 4, 943–954.