[1] R. Abinaya, L.P. Maguluri, S. Narayana and M. Syamala, A novel biometric approach for facial image recognition using deep learning techniques, Int. J. Adv. Trends Comput. Sci. Eng. 9 (2020), no. 5, 8874–8879.
[2] J.M. Al-Tuwaijari and S.A. Shaker, Face detection system based Viola-Jones algorithm, 6th Int. Engin. Conf. ”Sustainable Technology and Development” (IEC), 2020, pp. 211–215.
[3] H.O. Aworinde, A.O. Afolabi, A.S. Falohun and O.T. Adedeji, Performance evaluation of feature extraction techniques in multi-layer based fingerprint ethnicity recognition system, Asian J. Res. Comput. Sci. 3 (2019), no. 1, 1–9.
[4] P. Giammatteo, F.V. Fiordigigli, L. Pomante, T. Di Mascio and F. Caruso, Age gender classifier for edge computing, 8th Mediterr. Conf. Embed. Comput. MECO 2019 - Proc., 2019, pp. 6–10.
[5] S. Gollapudi, Deep learning for computer vision, In Learn computer vision using OpenCV, Apress, Berkeley, CA, 2019.
[6] S.A. Grainger, J.D. Henry, L.H. Phillips, E.J. Vanman and R. Allen, Age deficits in facial affect recognition: The influence of dynamic cues, J. Gerontol. - Ser. B Psychol. Sci. Soc. Sci. 72 (2017), no. 4, 622–632.
[7] G. Guo and N. Zhang, A survey on deep learning based face recognition, Comput. Vis. Image Underst. 189 (2019), p. 102805.
[8] M. Hassaballah and S. Aly, Face recognition: Challenges, achievements and future directions, IET Comput. Vis. 9 (2015), no. 4, 614–626.
[9] B. Hassan, E. Izquierdo and T. Piatrik, Soft biometrics: A survey benchmark analysis, open challenges and recommendations, Multimedia Tools and Applications, (2021).
[10] C.Y. Hsu, L.E. Lin and C.H. Lin, Age and gender recognition with random occluded data augmentation on facial images, Multimed. Tools Appl. 80 (2021), no. 8, 11631–11653.
[11] K. Ito, H. Kawai, T. Okano, and T. Aoki, Age and gender prediction from face images using convolutional neural network, Asia-Pacific Signal Inf. Process. Assoc. Annu. Summit Conf. APSIPA ASC 2018 - Proc. IEEE, 2018, pp. 7–11.
[12] A. Jain and V. Kanhangad, Gender classification in smartphones using gait information, Expert Syst. Appl. 93 (2017), 257–266.
[13] A.K. Jain, A. Ross and S. Prabhakar, An introduction to biometric recognition, IEEE Trans. Circuits Syst. Video Technol. 14 (2004), no. 1, 4–20.
[14] F. Karamizadeh, Face recognition by implying illumination techniques – A review paper, J. Sci. Engin. 6 (2015), no. 1, 1–7.
[15] J.A. Lee and K.C. Kwak, Personal identification using an ensemble approach of 1D-LSTM and 2D-CNN with electrocardiogram signals, Appl. Sci. 12 (2022), no. 5.
[16] G. Levi and T. Hassner, Age and gender classification using convolutional neural networks, Proc. IEEE Conf. Computer Vision pPattern Recogn. Workshops, 2015, pp. 34–42.
[17] C.H. Nga, K.-T. Nguyen, N.C. Tran and J.-C. Wang, Transfer learning for gender and age prediction, IEEE Int. Conf. Consum. Electron. (ICCE-Taiwan), IEEE, Taiwan, 2020, pp. 1–2.
[18] I. Siddiqi, C. Djeddi, A. Raza and L. Souici-Meslati, Automatic analysis of handwriting for gender classification, Pattern Anal. Appl. 18 (2015), no. 4, 887–899.
[19] P. Terh¨orst, D. F¨ahrmann, N. Damer and F. Kirchbuchner, On soft-biometric information stored in biometric face embeddings, IEEE Trans. Biomet. Behav. Identity Sci. 3 (2021), no. 4, 519–534.
[20] Y. Xu, Z. Li, J. Yang and D. Zhang, A survey of dictionary learning algorithms for face recognition, IEEE Access, 5 (2017), 8502–8514.
[21] A. Zhuchkov, Analyzing the effectiveness of image augmentations for face recognition from limited data, Int. Conf. Nonlinearity Inf. Robotics (NIR), IEEE, 2021, pp.1–6.