[1] N. Abdellouahab, B. Tellab, and K. Zennir, Existence and uniqueness of solutions to fractional Langevin equations involving two fractional orders, Kragujevac J. Math. 46 (2022), no. 5, 685–699.
[2] C.R. Adams, The general theory of a class of linear partial q−difference equations, Trans. Amer. Math. Soc. 26 (1924), 283–312.
[3] M.H. Annaby and Z.S. Mansour, q−Fractional Calculus and Equations, Springer Heidelberg, Cambridge, 2012.
[4] F. Atici and P.W. Eloe, Fractional q−calculus on a time scale, J. Nonlinear Math. Phys. 14 (2007), no. 3, 341–352.
[5] H. Baghani, Existence and uniqueness of solutions to fractional Langevin equations involving two fractional orders, J. Fixed Point Theory Appl. 20 (2018), no. 2, 7 pages.
[6] R.A.C. Ferreira, Nontrivials solutions for fractional q−difference boundary value problems, Electronic J. Qual. Theory Differ. Equ. 70 (2010), 1–101.
[7] S.N. Hajiseyedazizi, M.E. Samei, J. Alzabut, and Y. Chu, On multi-step methods for singular fractional q–integrodifferential equations, Open Math. 19 (2021), 1378––1405.
[8] F.H. Jackson, q−difference equations, Amer. J. Math. 32 (1910), 305–314.
[9] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[10] P.M. Rajkovic, S.D. Marinkovic, and M.S. Stankovic, Fractional integrals and derivatives in q−calculus, Appl. Anal. Discrete Math. 1 (2007), 311–323.
[11] M. E. Samei, V. Hedayati, and Sh. Rezapour, Existence results for a fraction hybrid differential inclusion with Caputo-Hadamard type fractional derivative, Adv. Differ. Equ. 2019 (2019), 163.
[12] M.E. Samei, R. Ghaffari, S.W. Yao, M.K.A. Kaabar, F. Mart´ınez, and M. Inc, Existence of solutions for a singular fractional q−differential equations under Riemann–Liouville integral boundary condition, Symmetry 13 (2021), 135.
[13] M.E. Samei, H. Zanganeh, and S.M. Aydogan, Investigation of a class of the singular fractional integro-differential quantum equations with multi-step methods, J. Math. Ext. 15 (2021), 1–54.