Existence of solutions for a $(p,q)$-Laplace equation with Steklov boundary conditions

Document Type : Research Paper

Authors

Department of Mathematics, Imam Khomeini International University, Qazvin, Iran

Abstract

Here, the existence of at least one nontrivial solution for the $(p,q)$-Laplacian problem
\[
\left\{ \begin{array}{lc}
div(|\nabla u|^{p-2}\nabla u)+div(|\nabla u|^{q-2}\nabla u)=f(x,u)\qquad &  x\in \Omega, \\
\\
|\nabla u|^{p-2}\frac{\partial u}{\partial n}+ |\nabla u|^{q-2}\frac{\partial u}{\partial n}=g(x,u)  & x\in  \partial  \Omega
\end{array} \right.
\]
is done, where $ \Omega$ is a bounded domain in $\mathbb{R}^N, N\geq 3$ and $q, p\geq 2$, via variational methods.

Keywords

[1] M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners, Existence results via the variational approach, Springer, 2011.
[2] M.A. Ragusa, A. Razani and F. Safari, Existence of radial solutions for a p(x)-Laplacian Dirichlet problem, Adv. Differential Equations 2021 (2021), no. 1, 1–14.
[3] F. Safari and A. Razani, Existence of positive radial solutions for Neumann problem on the Heisenberg group, Bound. Value Probl. 2020 (2020), no. 1, 1–14.
[4] F. Safari and A. Razani, Nonlinear nonhomogeneous Neumann problem on the Heisenberg group, Appl. Anal. 101 (2020), no. 7, 2387–2400.
[5] F. Safari and A. Razani, Existence of radial solutions of the Kohn-Laplacian problem, Complex Var. Elliptic Equ. 67 (2022), no. 2, 259–273.
[6] F. Safari and A. Razani, Positive weak solutions of a generalized supercritical Neumann problem, Iran J. Sci. Technol. Trans. Sci. 44 (2020), no. 6, 1891–1898,
[7] F. Safari and A. Razani, Radial solutions for a general form of a p-Laplace equation involving nonlinearity terms, Complex Var. Elliptic Equ. (2021), 1–11. https://doi.org/10.1080/17476933.2021.1991331.
[8] F. Safari and A. Razani, Existence of radial solutions for a weighted p-biharmonic problem with Navier boundary condition on the Heisenberg group, Math. Slovaca 72 (2022), no. 3, 677–692.
Volume 14, Issue 7
July 2023
Pages 119-122
  • Receive Date: 18 March 2022
  • Revise Date: 24 June 2022
  • Accept Date: 12 September 2022