The results of the superposition operator on sequence space bvp

Document Type : Research Paper

Authors

Department of Mathematics, University of Hormozgan, Bandar Abbas, Iran

Abstract

In this paper, the conditions for the superposition operators were provided to map the space bvp into bvq, where 1p, q<. Additionally, we presented the necessary and sufficient conditions under which superposition operators become bounded, continuous and uniformly continuous on the sequence space bvp.

Keywords

[1] R. Adams, Sobolev spaces, Academic Press, New York, 1976.
[2] J. Appell and P.P. Zabrejko, Nonlinear superposition operators, Cambridge University Press, 1990.
[3] J. Appell and P. P. Zabrejko, Remarks on the superposition operator problem in various function spaces, Complex Var. Elliptic Equ. 55 (2010), 727-–737.
[4] F. Basar and B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrain. Math. J. 55 (2003), 136-–147.
[5] V.A. Bondarenko and P.P. Zabrejko, The superposition operator in Holder functions spaces (Russian), Dokl. Akad. Nauk SSSR 222 (1975), 1265–1268.
[6] G. Bourdaud, M. Lanza de Cristoforis and W. Sickel, Superposition operators and functions of bounded p-variation, Rev. Mat. Iberoam. 22 (2006) 455–487.
[7] D. Bugajewska, On the superposition operator in the space of functions of bounded variation, Math. Comput. Model. 52 (2010), 791–796.
[8] F. Dedagic and N. Okicic, On the compactness and condensing of nonlinear superposition operators, Kragujevac J. Math. 28 (2005), 173–183.
[9] F. Dedagic and P.P. Zabrejko, On the superposition operator in ℓp spaces, (in Russian), Sibir. Mat. Zhurn. (1987), 86–98.
[10] A.I. Gusejnov and H.Sh. Muhtarov, Introduction to the theory of nonlinear singular integral equations (Russian), Nauka, Moskva, 1980.
[11] R. Lashkaripour and J. Fathi, Norms of matrix operators on bvp, J. Math. Inequal. 4 (2012), 589—592.
[12] M. Marcus and V.J. Mizel, Nemytskij operators on Sobolev spaces, Arch. Rat. Mech. Anal. 51 (1973), 347–370.
[13] R. Pluciennik, Continuity of superposition operators on ω0 and W0, Commentat. Math. Univ. Carol. 31 (1990), 529-–542.
[14] J. Robert, Continuite d’un operateur non lineaire sur certains espaces de suites, C. R. Acad. Sci. 259 (1964) 1287–1290.
[15] A. Sama-ae, Boundedness and continuity of superposition operator on Er(p) and Fr(p), Songklanakarin J. Sci. Technol. 24 (2002), 451—466.
[16] P.P. Zabrejko and A.I. Povolotskij, The Hammerstein operator and Orlicz spaces (Russian), Jaroslav. Gos. Univ. Kach. Priblizh. Metody Issled. Oper. Uravn. 2 (1977), 39–51.
Volume 14, Issue 7
July 2023
Pages 309-320
  • Receive Date: 29 July 2022
  • Revise Date: 02 September 2022
  • Accept Date: 27 November 2022