[1] S.M.R.K. Al-Jumur, S.W. Kareem, and R.Z. Yousif, Predicting temperature of Erbil City applying deep learning and neural network, Indones. J. Electric. Engin. Comput. Sci. 22 (2021), no. 2, 944–952.
[2] J. Cheng, W. Huang, S. Cao, R. Yang, W. Yang, Z. Yun, Z. Wang, and Q. Feng, Enhanced performance of brain tumor classification via tumor region augmentation and partition, PloS one 10 (2015), no. 10, e0140381.
[3] Harvard, The Whole Brain Atlas.
[4] R.S. Hawezi, F.S. Khoshaba, and S.W. Kareem, A comparison of automated classification techniques for image processing in video internet of things, Comput. Electric. Engin. 101 (2022), 108074.
[5] S.H. Ismael, S.W. Kareem, and F.H. Almukhtar, Medical image classification using different machine learning algorithms, AL-Rafidain J. Comput. Sci. Math. 14 (2020), no. 1, 135–147.
[6] A. I¸sın, C. Direko˘glu, and M. S¸ah, Review of MRI-based brain tumor image segmentation using deep learning methods, Procedia Comput. Sci. 102 (2016), 317–324.
[7] S.-L. Jui, S. Zhang, W. Xiong, F. Yu, M. Fu, D. Wang, A.E. Hassanien, and K. Xiao, Brain MRI tumor segmentation with 3D intracranial structure deformation features, IEEE Intell. Syst. 31 (2015), no. 2, 66–76.
[8] S. Kareem and M.C. Okur, Evaluation of Bayesian network structure learning, vol. 201, 2017.
[9] , Bayesian network structure learning using hybrid bee optimization and greedy search, Adana, Turkey: C¸ ukurova University (2018).
[10] S.W. Kareem, A nature-inspired metaheuristic optimization algorithm based on crocodiles hunting search (CHS), Int. J. Swarm Intell. Res. 13 (2022), no. 1, 1–23.
[11] S.W. Kareem and M.C. Okur, Pigeon inspired optimization of bayesian network structure learning and a comparative evaluation, J. Cognit. Sci. 20 (2019), no. 4, 535–552.
[12] , Falcon optimization algorithm for Bayesian networks structure learning, Comput. Sci. 22 (2021), no. 4.
[13] S.W. Kareem, R.Z. Yousif, and S.M.J. Abdalwahid, An approach for enhancing data confidentiality in hadoop, Indones. J. Electric. Engin. Comput. Sci. 20 (2020), no. 3, 1547–1555.
[14] J. Kim, C. Lenglet, Y. Duchin, G. Sapiro, and N. Harel, Semiautomatic segmentation of brain subcortical structures from high-field MRI, IEEE J. Biomed. Health Inf. 18 (2013), no. 5, 1678–1695.
[15] G. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, J. Awm Van Der Laak, B. Van Ginneken, and C.I. S´anchez, A survey on deep learning in medical image analysis, Med. Image Anal. 42 (2017), 60–88.
[16] B.H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz, J. Slotboom, and R. Wiest, The multimodal brain tumor image segmentation benchmark (BRATS), IEEE Trans. Med. Imag. 34 (2014), no. 10, 1993–2024.
[17] G. Mohan and M.M. Subashini, MRI based medical image analysis: Survey on brain tumor grade classification, Biomed. Signal Process. Control 39 (2018), 139–161.
[18] M. Osadebey, M. Pedersen, D. Arnold, and K. Wendel-Mitoraj, No-reference quality measure in brain MRI images using binary operations, texture and set analysis, IET Image Process. 11 (2017), no. 9, 672–684.
[19] S. Pereira, A. Pinto, V. Alves, and C.A. Silva, Brain tumor segmentation using convolutional neural networks in MRI images, IEEE Trans. Med. Imag. 35 (2016), no. 5, 1240–1251.
[20] S. Poornachandra and C. Naveena, Pre-processing of mr images for efficient quantitative image analysis using deep learning techniques, IEEE, 2017, pp. 191–195.
[21] J. Sachdeva, V. Kumar, I. Gupta, N. Khandelwal, and C.K. Ahuja, A package-SFERCB-“Segmentation, feature extraction, reduction and classification analysis by both SVM and ANN for brain tumors”, Appl. Soft Comput. 47 (2016), 151–167.
[22] R.V. Suryavamsi, L.S.T. Reddy, S. Saladi, and Y. Karuna, Comparative analysis of various enhancement methods for astrocytoma MRI images, IEEE, 2018, pp. 0812–0816.
[23] H.-Y. Tsai, H. Zhang, C.-L. Hung, and G. Min, GPU-accelerated features extraction from magnetic resonance images, IEEE Access 5 (2017), 22634–22646.
[24] S. Widyarto, S.R.B. Kassim, and W.K. Sari, 2D-sigmoid enhancement prior to segment MRI Glioma tumour: Pre image-processing, IEEE, 2017, pp. 1–5.
[25] R.Z. Yousif, S.W. Kareem, and S.M. Abdalwahid, Enhancing approach for information security in hadoop, Polytech. J. 10 (2020), no. 1, 81–87.
[26] J. Zhang, M. Liu, L. An, Y. Gao, and D. Shen, Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images, IEEE J. Biomed. Health Inf. 21 (2017), no. 6, 1607–1616.