[1] S.H. Abdulredah and D.J. Kadhim, New approaches of cloud services access using Tonido cloud server for realtime applications, J. Engin. 26 (2020), no. 8, 83–99.
[2] B. Beddad and K. Hachemi, Efficient implementation of an improved median filter on TMS320C6416 digital signal processor, Proc. IEEE Int. Conf. Electric. Sci. Technol. Maghreb, Algiers, Algeria, 2018.
[3] L. Cuadros-Rodrigues, E. Perez-Castano and C. Ruiz-Samblas, Quality performance metrics in multivariate classification methods for qualitative analysis, TrAC Trends Anal. Chem. 80 (2016), 612–624.
[4] M. Hafiz Ishak, N.Sofia, M. Marzuki, M. Abdullah, Z. Soh, I. Isa and S. Sulaiman, Image quality assessment for image filtering algorithm: Qualitative and quantitative analyses, Proc. IEEE 9th Int. Conf. Cont. Syst. Comput. Engin., Penang, Malaysia, 2019, pp. 162–167.
[5] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, Proc. IEEE Conf. Comput. Vision Pattern Recog., 2016, pp. 770–778.
[6] J. Huber, Batch normalization in 3 levels of understanding, Towards Data Science, 2020.
[7] L. Hughes, M. Schmitt, L. Mou, Y. Wang, X. Zuh and R. Letters, Identifying corresponding patches in SAR and optical images with a pseudo-siamese CNN, IEEE Geosci. Remote Sens. Lett. 15 (2018), 784–788.
[8] S.Q. Jabbar, D.J. Kadhim, A proposed adaptive bitrate scheme based on bandwidth prediction algorithm for smoothly video streaming, J. Engin. 27 (2021), no. 1, 112–129.
[9] S.Q. Jabbar, D.J. Kadhim and Y. Li1, Developing a video buffer framework for video streaming in cellular networks, Wireless Commun. Mobile Comput. 2018 (2018).
[10] M.A. Joodi, M.H. Saleh and D.J. Kadhim, Increasing validation accuracy of a face mask detection by new deep learning model-based classification, Indones. J. Electric. Engin. Comput. Sci. 29 (2023), 304–3014.
[11] D.J. Kadhim and O.A. Hamad, Hamad Improving IoT applications using a proposed routing protocol, J. Engin. 20 (2014), no. 11, 50–62.
[12] N. Kan, N. Kondo, W. Chinsatit and T. Saitoh, Effectiveness of data augmentation for CNN-based pupil center point detection, Proc. IEEE 57th Ann. Conf. Soc. Instrum. Cont. Engin. Japan, Nara, Japan, 2018, pp. 441-464.
[13] D. Kingma and J. Ba, Adam: A method for stochastic optimization, 3rd Int. Conf. Learn. Represent., San Diego,2015.
[14] A. Krizhevsky, I. Sutskever and G.Hinton, Imagenet classification with deep convolutional neural networks, Commun. ACM 60 (2017), no. 6, 84–90.
[15] M. Kutlug¨un, Y. S¸irin and M. Karakaya, The effects of augmented training dataset on performance of convolutional neural networks in face recognition system, Proc. IEEE, Federated Conf. Comput. Sci. Inf. Syst., Leipzig, Germany, 2019, pp. 929—932.
[16] K. Lakhwani, H. Gianey and Sh. Gupta, An enhanced approach to improve UIQI and PSNR of noised colored images using DWTT filter, Proc. IEEE Int. Conf. Comput. Power Commun. Technol., Greater Noida, India, 2018, pp. 289–293.
[17] M. Ofori-Oduro and M. Amer, Data augmentation using artificial immune systems for noise-robust CNN models, Proc. IEEE Int. Conf. Image Process. (ICIP), Abu Dhabi, United Arab Emirates, 2020, pp. 833-837.
[18] J. Rasheed, E. Alimovski, A. Rasheed, Y. Sirin, A. Jamil and M. Yesiltepe, Effects of glow data augmentation on face recognition system based on deep learning, Proc. IEEE Int. Cong. Human-Comput. Interact. Optim. Robotic. Appl., Ankara, Turkey, 2020.
[19] S. Saxena, Introduction to Softmax for Neural Network, Analytic Vidhya, 2021.
[20] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, Comput. Vision Pattern Recog. Vers. 4, 6, Conference ICLR , 2015.
[21] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, Rethinking the inception architecture for computer vision, Proc. IEEE Conf. Comput. Vision Pattern Recog., 2016, pp. 2818–2826.
[22] A. Vikramathithan, S. Bhat and D. Shashikumar, Denoising high density impulse noise using Duo-Median filter for mammogram images, Proc. IEEE Int. Conf. Smart Technol. Comput. Electric. Electronic., Bengaluru, India, 2020, pp. 610–613.
[23] D. Villar, S. Torcida and G. Acosta1, Median filtering: A new insight, J. Meth. Imag. Vision 58 (2017), 130–146.
[24] D. Wang, D. Wang, Hongzhi Yu and G. Li, Face recognition system based on CNN, Proc. IEEE Int. Conf. Comput. Inf. Big Data Appl., Guiyang, China, 2020, pp. 470–473.
[25] Y. Weng and H. Zhou, Data augmentation computing model based on generative adversarial network, IEEE Access 7 (2019), 64223–64233.
[26] M. Wani, F. Bhat, S. Afzal and A. Khan, Advances in deep learning, Studies in Big Data, Springer, 2020.
[27] G. Wimmer, A. Uhl and A. Vecsei, Evaluation of domain specific data augmentation techniques for the classification of celiac disease using endoscopic imagery, Proc. IEEE 19th Int. Workshop on Multimedia Signal Proces., Luton, UK, 2017.