[1] M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), 416–420.
[2] I. Altun and H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl. 2010 (2010), 1–17.
[3] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922), 133–181.
[4] S. Chandok and E. Karapinar, Common fixed point of generalized rational type contraction mappings in partially ordered metric spaces, Thai J. Math. 11 (2013), no. 2, 251–260.
[5] Z. Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl. 86 (1982), no. 1, 74–95.
[6] V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets Syst. 125 (2002), no. 2, 245–252.
[7] N.T. Hieu and N.V. Dung, Some fixed point results for generalized rational type contraction mappings in partially ordered b-metric space, Facta Univ. Ser. Math. Inf. 30 (2015), no. 1, 49–66.
[8] V. Istratescu, An Introduction to Theory of Probabilistic Metric Spaces with Applications, Politehnica University of Bucharest Bucharest, Romania, 1974.
[9] G. Jungck, Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci. 4 (1996), 199–215.
[10] S.G. Matthews, Partial metric topology, Ann. New York Acad. Sci. 728 (1994), 183–197.
[11] D. Mihet, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets Syst. 159 (2008), no. 6, 739–744.
[12] J.J. Nieto and R.R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223–239.
[13] B. Patir, N. Goswami and L. N. Mishra, Fixed point theorems in fuzzy metric spaces for mappings with some contractive type conditions, Korean J. Math. 26 (2018), no. 2, 307–326.
[14] A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435–1443.
[15] A. Roldan, J. Martinez-Moreno and C. Roldan, On interrelationships between fuzzy metric structures, Iran. J. Fuzzy Syst. 10 (2013), 133–150.
[16] A. F. Roldan Lopez de Hierro and M.de la Sen, Some fixed point theorems in Menger probabilistic metric-like spaces, Fixed Point Theory Appl. 2015 (2015), no. 176, 16 pages.
[17] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313–334.
[18] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Dover, New York, 2005.
[19] S. Sedghi, N. Shobkolaei, T. Doˇsenovic and S. Radenovic, Suzuki-type of common fixed point theorems in fuzzy metric spaces, Math. Slovaca 68 (2018), no. 2, 451–462.
[20] N. Seshagiri Rao, K. Kalyani and B. Mitiku, Fixed point theorems for nonlinear contractive mappings in ordered b-metric space with auxiliary function, BMC Res Notes 13 (2020), no. 451, 1–8.
[21] S. Shukla and M. Abbas, Fixed point results in fuzzy metric-like spaces, Iran. J. Fuzzy Syst. 11 (2014), no. 5, 81–92.
[22] G. Sun and K. Yang, Generalized fuzzy metric spaces with properties, Res. J. Appl. Sci. Engin. Technol. 2 (2010), no. 7, 673–678.