Bicontinuous biseparating operators on Orlicz spaces in the context of hypergroups

Document Type : Research Paper


Department of Mathematics, University of Qom, Qom, Iran


In this paper, first, we study bicontinuous biseparating left multipliers on Orlicz algebras in the context of a compact hypergroup and give some formula for them. Also, we assume that $\Phi$ is a $\Delta_2$-regular Young function with $\Phi\in\Delta'$ (globally) which is not equivalent to $|x|^2$, and prove that if there is an isometry algebra isomorphism between convolution Orlicz algebras $L^\Phi(G_1)$ and $L^\Phi(G_2)$, then the underlying locally compact groups $G_1$ and $G_2$ are isomorphic.


[1] A.R. Bagheri Salec, V. Kumar and S.M. Tabatabaie, Convolution properties of Orlicz spaces on hypergroups, Proc. Amer. Math. Soc. 150 (2022), 1685–1696.
[2] W.R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, De Gruyter, Berlin, 1995.
[3] S. Degenfeld-Schonburg and R. Lasser, Multipliers on Lp-spaces for hypergroups, Rocky Mount. J. Math. 43 (2013), no. 4, 1115–1139.
[4] C.F. Dunkl, The measure algebra of a locally compact hypergroup, Trans. Amer. Math. Soc. 179 (1973), 331–348.
[5] A. Ebadian and A. Jabbari, Convolution operators on Banach-Orlicz algebras, Anal. Math. 46 (2020), 243–264.
[6] R.E. Edwards, Bipositive and isometric isomorphisms of some convolution algebras, Canad. J. Math. 17 (1965), 839–846.
[7] R.J. Fleming and J.E. Jamison, Isometries on Banach spaces: function spaces, Chapman, Hall/CRC, Boca Raton (2003), FL 129.
[8] F. Ghahramani and S. Zadeh, Bipositive isomorphisms of Beurling algebras, Canad. J. Math. 1 (2017), 3–20.
[9] R.I. Jewett, Spaces with an abstract convolution of measures, Adv. Math. 18 (1975), l–101.
[10] Y. Kawada, On the group ring of a topological group, Math. Japon. 1 (1948), 1–5.
[11] V. Kumar and R. Sarma, The Hausdorff–Young inequality for Orlicz spaces on compact hypergroups, Colloq. Math. 160 (2020), no. 1, 41–51.
[12] V. Kumar, S. Ritumoni and N.S. Kumar, Orlicz spaces on hypergroups, Publ. Math. Debrecen 94 (2019), no. 1-2, 31–47.
[13] Y. Kuznetsova and S. Zadeh, On isomorphisms between weighted Lp-algebras, Canad. Math. Bull. 64 (2021), no. 4, 853–866.
[14] J. Lamperti, On the isometries of certain function-spaces, Pacific J. Math. 8 (1958), 459–466.
[15] S. Oztop and S.M. Tabatabaie, Weighted Orlicz algebras on hypergroups, Filomat 34 (2020), no. 9, 2991–3002.
[16] S.K. Parrott, Isometric multipliers, Pacific J. Math. 25 (1968), 159–166.
[17] M.M. Rao and Z.D. Ren, Applications of Orlicz Spaces, Marcel Dekker, New York, 2002.
[18] M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
[19] R. Sarma, N. Shravan Kumar and V. Kumar, Multipliers on vector-valued L1-spaces for hypergroups, Acta Math. Sin. (Engl. Ser.) 34 (2018), no. 7, 1059–1073.
[20] R. Spector, Apercu de la theorie des hypergroups, Analyse Harmonique sur les Groups de Lie, 643-673, Lec. Notes Math. Ser., 497, Springer, 1975.
[21] R.S. Strichartz, Isomorphisms of group algebras, Proc. Amer. Math. Soc. 17 (1966), 858–862.
[22] S.M. Tabatabaie and M. Latifpour, Isomorphisms of Orlicz spaces, Forum Mathematicum, (to appear) DOI: 10.1515/forum-2022-0051
[23] J.K. Wendel, On isometric isomorphism of group algebras, Pacific J. Math. 1 (1951), 305—311.
[24] K.V. Wood, Isomorphisms of lp group algebras, Indiana Univ. Math. J. 50 (2001), no. 2, 1027-–1045.
[25] K.V. Wood, Almost isometric ∗-homomorphisms of lp group algebras, Lecture Notes in Pure and Applied Mathematics 175 (1996), 461–466.
[26] K.V. Wood, Small isomorphisms between group algebras, Glasgow Math. J. 33 (1991), no. 1, 21–28.
[27] S. Zadeh, Isometric isomorphisms of Beurling algebras, J. Math. Anal. Appl. 1 (2016), 1–13.
Volume 14, Issue 9
September 2023
Pages 137-143
  • Receive Date: 17 October 2022
  • Revise Date: 20 December 2022
  • Accept Date: 21 December 2022