[1] H. Aydi, M.F. Bota, E. Karapinar and S. Mitrovic, A fixed point theorem for set-valued quasicontractions in b-metric spaces, Fixed Point Theory Appl. 2012 (2012).
[2] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math. 3 (1922), 133–181.
[3] M.F. Bamsley, Fractals everywhere, Academic Press, 1993.
[4] M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metric, Stud. Univ. Babe¸s-Bolyai Math. 54 (2009), 1-14.
[5] M. Boriceanu, M. Bota and A. Petrusel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math. 8 (2010), no. 2, 367 377.
[6] S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci. 25 (1972), 727–730. -
[7] C. Chifu and A. Petrusel, Multivalued fractals and generalized multivalued contractions, Chaos Solitons Fractals 70 (2008), no. 36, 203–210.
[8] C. Chifu and G. Petrusel, FIxed points for multivalued contraction in b-metric spaces with applications to fractals, Taiwan. J. Math. 14 (2014), no. 5, 1365–1375.
[9] C. Chifu and G. Petrusel, Fixed point results for multivalued Hardy-Roger contraction in b-metric space, Filomat 31 (2017), no. 8m 2499–2507.
[10] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav. 1 (1993), 5–11.
[11] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena. 46 (1998), no. 3, 263–276.
[12] V.T.L. Hang and N.V. Dung, Answers to questions on multivalued fractals in metric spaces, Indag. Mat. 28 (2017), 749–759.
[13] J. Fisher, Numerical aspects of multivalued fractals, Fixed Point Theory 5 (2004), no. 2, 249–264.
[14] G.E. Hardy and T.D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16 (1973), 201–206.
[15] J.M. Joseph, D.D. Roselin and M. Marudai, Fixed point theorems on multivalued mappings in b-metric spaces, SpringerPlus 5 (2016), no. 1, 1–8.
[16] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71–76.
[17] R. Kannan, Some results on fixed points-II, Amer. Math. Month. 76 (1969), no. 4, 405–408.
[18] N. Mioguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), no. 1, 172–188.
[19] P.K. Mishra, S. Sachdeva and S.K. Banerjee, Some fixed point theorems in b-metric space, Turk. J. Math. Number Theory 2 (2014), no. 1, 19–22.
[20] S.B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30 (1969), no. 2, 475–488.
[21] S. Reich, Some problems and results in fixed point theory, Contemp. Math. 21 (1983), 179–187.
[22] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), 121–124.