1] S¸. Acıta¸s, T. Arslan, and B. S¸eno˘glu, Slash Maxwell Distribution: Definition, Modified Maximum Likelihood Estimation and Applications, Gazi Univer. J. Sci. (2020).
[2] A. Ahmad, S.P. Ahmad, and A. Ahmed, Transmuted inverse Rayleigh distribution: A generalization of the inverse Rayleigh distribution, Math. Theory Model. 4 (2014), no. 7, 90–98.
[3] M.T. Ahmed, M.A. Khaleel, and E.Kh. Khalaf, The new distribution (Topp Leone Marshall Olkin-Weibull) properties with an application, Period. Engin. Natural Sci. 8 (2020), no. 2, 684–692.
[4] H. Akaike, A new look at the statistical model identification, IEEE Trans. Automatic Control 19 (1974), no. 6, 716–723.
[5] R.S. AL-Saffar and M.W. Neamah, On a new double weighted exponential-pareto distribution: Properties and estimation, Period. Engin. Natural Sci. 10 (2022), no. 1, 330–342.
[6] H.S. Bakouch, B.M. Al-Zahrani, A.A. Al-Shomrani, V.A.A. Marchi, and F. Louzada, An extended Lindley distribution, J. Korean Statist. Soc. 41 (2012), no. 1, 75–85.
[7] I. Barranco-Chamorro, Y.A. Iriarte, Y.M. G´omez, J.M. Astorga, and H.W. G´omez, A generalized Rayleigh family of distributions based on the modified slash model, Symmetry 13 (2021), no. 7, 1226.
[8] S. Cakmakyapan and O. Gamze, The Lindley family of distributions: properties and applications, Hacettepe J. Math. Statist. 46 (2016), no. 6, 1113–1137.
[9] M.A. Chaudhry and S.M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math. 55 (1994), no. 1, 99–123.
[10] M. Dwiki, S. Nurrohmah, and M. Novita, Lindley–exponential slash distribution, vol. 1725, IOP Publish., 2021, p. 012093.
[11] D.D. Dyer and C.W. Whisenand, Best linear unbiased estimator of the parameter of the Rayleigh distribution-Part I: Small sample theory for censored order statistics, IEEE Trans. Reliab. 22 (1973), no. 1, 27–34.
[12] A.J. Fern´andez, Bayesian estimation and prediction based on Rayleigh sample quantiles, Qual. Quant. 44 (2010), no. 6, 1239–1248.
[13] M.E. Ghitany, B. Atieh, and S. Nadarajah, Lindley distribution and its application, Math. Comput. Simul. 78 (2008), no. 4, 493–506.
[14] H.W. G´omez, J.F. Olivares-Pacheco, and H. Bolfarine, An extension of the generalized Birnbaum–Saunders distribution, Statist. Probab. Lett. 79 (2009), no. 3, 331–338.
[15] H.W. G´omez, F.A. Quintana, and F.J. Torres, A new family of slash-distributions with elliptical contours, Statist. Probab. Lett. 77 (2007), no. 7, 717–725.
[16] H.W. G´omez and O. Venegas, Erratum to:“A new family of slash-distributions with elliptical contours”[Statist. Probab. Lett. 77 (2007) 717–725], Statist. Probab. Lett. 78 (2008), no. 14, 2273–2274.
[17] A.F. Hameed and I.M. Alwan, Bayes estimators for reliability and hazard function of Rayleigh-Logarithmic (RL) distribution with application, Period. Engin. Natural Sci. 8 (2020), no. 4, 1991–1998.
[18] Y.A. Iriarte, H.W. G´omez, H. Varela, and H. Bolfarine, Slashed rayleigh distribution, Rev. Colombiana Estad´ıst. 38 (2015), no. 1, 31–44.
[19] F. Kanfer and S. Millard, Beta slashed generalised half-normal distribution, South Afr.Statist. J. 51 (2017), no. 2, 329 343.
[20] D.V. Lindley, Fiducial distributions and Bayes’ theorem, J. Royal Statist. Soc. Ser. B (1958), 102–107.
[21] J. Mazucheli and J.A. Achcar, The Lindley distribution applied to competing risks lifetime data, Comput. Meth. Prog. Biomed. 104 (2011), no. 2, 188–192.
[22] F/ Merovci and I/ Elbatal, Weibull Rayleigh distribution: Theory and applications, Appl. Math. Inf. Sci/ 9 (2015), no. 5, 1–11.
[23] J.F. Olivares-Pacheco, H.C. Cornide-Reyes, and M. Monasterio, An extension of the two-parameter Weibull distribution, Rev. Colombiana Estad´ıst. 33 (2010), no. 2, 219–231.
[24] N.M. Olmos, H. Varela, H. Bolfarine, and H.W. G´omez, An extension of the generalized half-normal distribution,
Statist. Papers 55 (2014), no. 4, 967–981.
[25] N.M. Olmos, H. Varela, H.W. G´omez, and H. Bolfarine, An extension of the half-normal distribution, Statist.
Papers 53 (2012), no. 4, 875–886.
[26] N.M. Olmos, O. Venegas, Y.M. Gomez, and Y.A. Iriarte, Confluent hypergeometric slashed-Rayleigh distribution:
Properties, estimation and applications, J. Comput. Appl. Math. 368 (2020), 112548.
[27] J. Reyes, O. Venegas, and H.W. G´omez, Modified slash Lindley distribution, J. Probab. Statist. 2017 (2017).
[28] H.S. Salinas, Y.A. Iriarte, and H. Bolfarine, Slashed exponentiated rayleigh distribution, Rev. Colombiana Estad´ıst.
38 (2015), no. 2, 453–466.
[29] G. Schwarz, Estimating the dimension of a model, Ann. Statist. 6 (1978), no. 2, 461–464.
[30] R.C. Team, R: A language and environment for statistical computing, (2013), Available online:
https://www.rproject.org (accessed on 24 January 2020).