[1] S. Alkarni, A.Z. Afify, I. Elbatal, and M. Elgarhy, The extended inverse weibull distribution: properties and applications, Complexity 2020 (2020).
[2] G. Chen and T.T. Pham, Introduction to fuzzy sets, fuzzy logic, and fuzzy control systems, CRC press, 2000.
[3] Antoni Drapella, The complementary weibull distribution: unknown or just forgotten?, Qual. Reliab. Engin. Int. 9 (1993), no. 4, 383–385.
[4] R.V. Hogg and A.T. Craig, Introduction to mathematical statistics.(5”” edition), Englewood Hills, New Jersey, 1995.
[5] M.S. Khan, G.R. Pasha, and A.H. Pasha, Theoretical analysis of inverse weibull distribution, WSEAS Trans. Math. 7 (2008), no. 2, 30–38.
[6] K.H. Lee, First course on fuzzy theory and applications, vol. 27, Springer Science & Business Media, 2004.
[7] R.M. Mweleli, L.A. Orawo, C.L. Tamba, and J.O. Okenye, Interval estimation in a two parameter weibull distribution based on type-2 censored data, Open J. Statist. 10 (2020), no. 06, 1039.
[8] E. N´ajera and A. Bol´ıvar-Cim´e, Comparison of some interval estimation methods for the parameters of the gamma distribution, Commun. Statist. Simul. Comput. (2021), 1–17.
[9] A. Pak, Inference for the shape parameter of lognormal distribution in presence of fuzzy data, Pakistan J. Statist. Oper. Res. (2016), 89–99.
[10] A. Pak, G.A. Parham, and M. Saraj, Reliability estimation in rayleigh distribution based on fuzzy lifetime data, Int. J. Syst. Assur. Engin. Manag. 5 (2014), no. 4, 487–494.
[11] P.L. Ramos, D. Nascimento, and F. Louzada, The long term fr\’echet distribution: Estimation, properties and its application, arXiv preprint arXiv:1709.07593 (2017).
[12] T. Tao, An introduction to measure theory, vol. 126, American Mathematical Society Providence, 2011.
[13] H. Torabi and S.M. Mirhosseini, The most powerful tests for fuzzy hypotheses testing with vague data, Appl. Math. Sci. 3 (2009), no. 33, 1619–1633.
[14] H.-C. Wu, Fuzzy reliability estimation using bayesian approach, Comput. Ind. Engin. 46 (2004), no. 3, 467–493.
[15] L.A. Zadeh, Zadeh, fuzzy sets, Inf. Control 8 (1965), 338–353.
[16] , Fuzzy algorithms, Inf. Control 12 (1968).
[17] H.-J. Zimmermann, Fuzzy set theory—and its applications, Kluwer, Nijhoff Publishing, Boston, 1985.