[1] S. Abbas, M. Benchohra and J. Henderson, Coupled Caputo-Fabrizio fractional differential systems in generalized Banach spaces, Malaya J. Mat. 9 (2021), no. 1, 20–25.
[2] S. Abbas, M. Benchohra and J.J. Nieto, Caputo-Fabrizio fractional differential equations with instantaneous impulses, AIMS Math. 6 (2021), no. 3, 2932–2946.
[3] F. Abdolrazaghi, A. Razani, A unique weak solution for a kind of coupled system of fractional Schrodinger equations, Opuscula Math. 40 (2020), no. 3, 313–322.
[4] B. Ahmad and S.K. Ntouyas, An existence theorem for fractional hybrid differential inclusions of Hadamard type with Dirichlet boundary conditions, Abstr. Appl. Anal. Anal. 2014 (2014), 7 pages.
[5] B. Ahmad, S. K. Ntouyas, Initial-value of nonlinear hybrid differential equations, Electronic J. Differ. Equ. 2014 (2014), no. 161, 1–8.
[6] A. Ardjouni and A. Djoudi, Initial-value problems for nonlinear hybrid implicit Caputo fractional differential equa- tions, Malaya J. Mat. 7 (2019), no. 2, 314–317.
[7] A. Ardjouni, A. Lachouri and A. Djoudi, Existence and uniqueness results for nonlinear hybrid implicit CaputoHadamard fractional differential equations, Open J. Math. Anal. 3 (2019), no. 2, 106–111.
[8] F. Behboudi, A. Razani and M. Oveisiha, Existence of a mountain pass solution for a nonlocal fractional (p, q)- Laplacian problem, Boundary Value Prob. 149 (2020), 14 pages.
[9] F. Bekada, S. Abbas and M. Benchohra, Boundary Value Problem for Caputo-Fabrizio Random Fractional Differential Equations, Moroccan J. Pure Appl. Anal, 6 (2020), no. 2, 218–230.
[10] A. Boudaoui and A. Slama, On coupled systems of fractional impulsive differential equations by using a new Caputo- Fabrizio fractional derivative, Math. Moravica 24 (2020), no. 2, 1–19.
[11] N. Derdar, Mixed nonlocal boundary value problem for implicit fractional differential equation involving both retarded and advanced arguments, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 2, 2697—2708.
[12] S.S. Dragomir, Some Gronwall Type Inequalities and Applications, Victoria University of Technology, Victoria 8001, Australia, 2002.
[13] Eiman, K. Shah, M. Sarwar and D. Baleanu, Study on Krasnoselskii’s fixed point theorem for Caputo-Fabrizio fractional differential equations, Adv. Differ. Equ. 178 (2020), 9 pages.
[14] A. Granas and J. Dugundji, Fixed point theory, Springer-Verlag, New York, 2003.
[15] R. Gul, M. Sarwar, K. Shah and T. Abdeljawad, Qualitative analysis of implicit Dirichlet boundary value problem for Caputo-Fabrizio fractional differential equations, J. Function Spaces 2020 (2020), Article ID 4714032, 9 pages.
[16] R. Hilfer, Applications of Fractional calculus in Physics, World Scientific, Singapore, 2000.
[17] M.A.E. Herzallah, D. Baleanu, On Fractional Order Hybrid Differential Equations, Abstr. Appl. Anal. 2014 (2014), Article ID 389386, 1-8.
[18] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
[19] A. Lachouri, A. Ardjouni and A. Djoudi, Existence and Ulam stability results for nonlinear hybrid implicit Caputo fractional differential equations, Math. Moravica 24 (2020), no. 1, 109-122.
[20] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl. 1 (2015), no. 2, 87-92.
[21] N. Nyamoradi and A. Razani, Existence to fractional critical equation with Hardy-Littlewood-Sobolev nonlinearities, Acta Math. Scientia 41 (2021), 1321–1332.
[22] K.B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
[23] I. Podlubny, Fractional Differential Equations, Acadmic press, New York, USA, 1993.
[24] A. Razani and F. Behboudi, Weak solutions for some fractional singular (p, q)-Laplacian nonlocal problems with Hardy potential, Rendi. Circ. Mat. Palermo Series 2 (2022), https://doi.org/10.1007/s12215-022-00768-1
[25] S. Sun, Y. Zhao, Z. Han and Y. Li, The existence of solutions for boundary value problem of fractional hybrid differential equations, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4961–4967.
[26] S. Toprakseven, The existence and uniqueness of initial-boundary value problems of the fractional Caputo- Fabrizio differential equations, Univer. J. Math. Appl. 2 (2019), no. 2, 100–106.
[27] D. Vivek, O. Baghani and K. Kanagarajan, Existence results for hybrid fractional differential equations with Hilfer fractional derivative, Caspian J. Math. Sci. 9 (2020), no. 2, 294–304.
[28] S. Zhanga, L. Hub and S. Sunc, The uniqueness of solution for initial value problems for fractional differential equation involving the Caputo-Fabrizio derivative, J. Nonlinear Sci. Appl. 11 (2018), no. 3, 428–436.