[1] A.A. Aljinovi´c, A. Civljak, S. Kovaˇc, J.E. Peˇcari´c and M..R. Penava, ˇ General integral identities and related inequalities, Element, Zagreb, Croatia, 2013.
[2] AA. Aljinovic, L. Kvesic and J.E. Pecaric, Weighted Ostrowski type inequalities by Lidstone polynomials, Math. Inequal. Appl. 22 (2019), no. 4, 1271–1282.
[3] A.A. Aljinovic, J.E. Pecaric and I. Peric, Estimates of the difference between two weighted integral means via weighted Montgomery identity, Math. Inequal. Appl. 7 (2004), 315–336.
[4] G.A. Anastassiou, Ostrowski type inequalities, Proc. Amer. Math. Soc. 123 (1995) 3775–3781.
[5] N.S. Barnett, P. Cerone, S.S. Dragomir and A.M. Fink, Comparing two integral means for absolutely continuous mappings whose derivatives are in L∞[a, b] and applications, Comput. Math. Appl. 44 (2002), 241–251.
[6] Z. Brady,Inequalities and higher order convexity , arXiv preprint arXiv:1108.5249 (2011).
[7] S.I. Butt, N. Mehmood and J.E. Peˇcari´c, New generalizations of Popoviciu type inequalities via new Green functions and Fink’s identity, Trans. A. Razmadze Math. 171 (2017), no. 3, 293–303.
[8] N. Irshad, A.R. Khan and M.A. Shaikh, Generalization of weighted Ostrowski inequality with applications in numerical integration, Adv. Inequal. Appl. 2019 (2019) Article 7.
[9] A.R. Khan and J.E. Peˇcari´c, Positivity of general linear inequalities for n-convex functions via the Taylor formula using new Green functions, Commun. Optim. Theory 5 (2019), 1–20.
[10] A.R. Khan, and J.E. Peˇcari´c, M. Praljak and S. Varoˇsanec, General linear inequalities and positivity, Element, Zagreb, 2017.
[11] A.R. Khan, J.E. Peˇcari´c, M. Praljak and S. Varoˇsanec, Positivity of sums for n-convex functions via Taylor’s formula and Green function, Adv. Stud. Contemp. Math. 27 (2017), no. 4, 515–537.
[12] L. Kvesi´c, J.E. Peˇcari´c and M.R. Penava, Generalizations of Ostrowski type inequalities via Hermite polynomials, J. Inequal. Appl. 1 (2020), 1–14.
[13] M. Matic and J.E. Peˇcari´c, Two-point Ostrowski inequality, Math. Inequal. Appl. 4 (2001), no. 2, 215–221.
[14] D.S. Mitrinovi´c, J.E. Peˇcari´c and A.M. Fink, Classical and new inequalities in analysis, ser, Math. Appl. (East European Ser.). Dordrecht: Kluwer Academic Publishers Group, pp. 311–331, 1993.
[15] DS. Mitrinovi´c, JE. Peˇcari´c, and AM. Fink, Inequalities for Functions and their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1994.
[16] A. Ostrowski, Uber die Absolutabweichung einer differentiebaren Funktion von ihren Integralmittelwert ¨ , Comment. Math. Helvetici 10 (1938), 226–227.
[17] J.E. Peˇcari´c, On the Cˇebysev inequality, Sci. Bull. Politeh. Univer. Timi¸soara 25 (1980), no. 39, 5–9.
[18] J.E. Peˇcari´c, I. Peri´c and A. Vukeli´c, Estimations of the difference of two integral means via Euler-type identities, Math. Inequal. Appl. 7 (2004), no. 3, 365–378.
[19] J.E. Peˇcari´c, A. Peruˇsi´c and K. Smoljak, Generalizations of Steffensen’s inequality by Abel-Gontscharoff polynomial, Khayyam J. Math. 1 (2015), no. 1, 45–61.
[20] J.E. Peˇcari´c, F. Proschan and Y.L. Tong, Convex functions, partial orderings, and statistical applications, Academic Press, 1992.