[1] D.D. Abdala, P. Wattuya, and X. Jiang, Ensemble clustering via random walker consensus strategy, 20th Int. Conf. Pattern Recogn., IEEE, 2010, pp. 1433–1436.
[2] M.T. AL-Sharuee, F. Liu, and M. Pratama, Sentiment analysis: An automatic contextual analysis and ensemble clustering approach and comparison, Data Knowledge Engin. 115 (2018), 194–213.
[3] H. Alizadeh, B. Minaei-Bidgoli, and H. Parvin, Cluster ensemble selection based on a new cluster stability measure, Intel. Data Anal. 18 (2014), no. 3, 389–408.
[4] H. Alizadeh, B. Minaei-Bidgoli, and H. Parvin, To improve the quality of cluster ensembles by selecting a subset of base clusters, J. Experimen. Theor. Artific. Intel. 26 (2014), no. 1, 127–150.
[5] J. Azimi and X. Fern, Adaptive cluster ensemble selection, Twenty-First Int. Joint Conf. Artific.l Intel., 2009.
[6] L. Bai, J. Liang, H. Du, and Y. Guo, An information-theoretical framework for cluster ensemble, IEEE Trans. Knowledge Data Engin. 31 (2018), no. 8, 1464–1477.
[7] V. Berikov, Weighted ensemble of algorithms for complex data clustering, Pattern Recogn. Lett. 38 (2014), 99–106.
[8] I. Bifulco, C. Fedullo, F. Napolitano, G. Raiconi, and R. Tagliaferri, Robust clustering by aggregation and intersection methods, Int. Conf. Knowledge-Based Intel. Inf. Engin. Syst., Springer, 2008, pp. 732–739.
[9] T. Boongoen and N. Iam-On, Cluster ensembles: A survey of approaches with recent extensions and applications, Comput. Sci. Rev. 28 (2018), 1–25.
[10] D.L. Davies and D.W. Bouldin, A cluster separation measure, IEEE Trans. Pattern Anal. Machine Intel. (1979), no. 2, 224–227.
[11] U.M. Fayyad, C. Reina, and P.S. Bradley, Initialization of iterative refinement clustering algorithms., KDD, 1998, pp. 194–198.
[12] X.Z. Fern and C.E. Brodley, Random projection for high dimensional data clustering: A cluster ensemble approach, Proc. 20th Int. Conf. Machine Learn. (ICML-03), 2003, pp. 186–193.
[13] X.Z. Fern and C.E. Brodley, Solving cluster ensemble problems by bipartite graph partitioning, Proc. Twenty-First Int. Conf. Machine Learn., 2004, p. 36.
[14] X.Z. Fern and W. Lin, Cluster ensemble selection, Statist. Anal. Data Min.: ASA Data Sci. J. 1 (2008), no. 3, 128–141.
[15] A.L.N. Fred and A.K. Jain, Combining multiple clusterings using evidence accumulation, IEEE Trans. Pattern Anal. Machine Intel. 27 (2005), no. 6, 835–850.
[16] A. Ghosh, J. Acharya, Cluster ensembles, Wiley Interdiscip. Rev.: Data Min. Knowledge Disc. 1 (2011), no. 4, 305–315.
[17] J. Ghosh, A. Strehl, and S. Merugu, A consensus framework for integrating distributed clusterings under limited knowledge sharing, Proc. NSF Workshop on Next Generation Data Mining, Citeseer, 2002, pp. 99–108.
[18] S.T. Hadjitodorov, L.I. Kuncheva, and L.P. Todorova, Moderate diversity for better cluster ensembles, Information Fusion 7 (2006), no. 3, 264–275.
[19] Y. Hong, S. Kwong, Y. Chang, and Q. Ren, Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm, Pattern Recogn. 41 (2008), no. 9, 2742–2756.
[20] X. Hu, Integration of cluster ensemble and text summarization for gene expression analysis, Proc. Fourth IEEE Symp. Bioinf. Bioengin., IEEE, 2004, pp. 251–258.
[21] X. Hu and I. Yoo, Cluster ensemble and its applications in gene expression analysis, Proc. Second Conf. Asia-Pacific Bioinf. Volume 29, 2004, pp. 297–302.
[22] D. Huang, J. Lai, and C.-D. Wang, Ensemble clustering using factor graph, Pattern Recogn. 50 (2016), 131–142.
[23] D. Huang, C.-D. Wang, and J.-H. Lai, Locally weighted ensemble clustering, IEEE Trans. Cybernet. 48 (2017), no. 5, 1460–1473.
[24] D. Huang, C.-D. Wang, and J.-H. Lai, Lwmc: A locally weighted meta-clustering algorithm for ensemble clustering, Int. Conf. Neural Inf. Process., Springer, 2017, pp. 167–176.
[25] L. Hubert and P. Arabie, Comparing clusterings, J. Classific. 2 (1985), 193–218.
[26] A.K. Jain and R.C. Dubes, Algorithms for clustering data, Prentice-Hall, Inc., 1988.
[27] A.K. Jain, M.N. Murty, and P.J. Flynn, Data clustering: A review, ACM Comput. Surv. (CSUR) 31 (1999), no. 3, 264–323.
[28] V. Kandylas, S. Upham, and L.H. Ungar, Finding cohesive clusters for analyzing knowledge communities, Knowledge Inf. Syst. 17 (2008), no. 3, 335–354.
[29] L. Kaufman and P.J. Rousseeuw, Finding groups in data: An introduction to cluster analysis, John Wiley & Sons, 2009.
[30] H. Khalili, M. Rabbani, and E. Akbari, Clustering ensemble selection based on the extended Jaccard measure, Turk. J. Electric. Engin. Comput. Sci. 29 (2021), no. 4, 2215–2231.
[31] B. King, Step-wise clustering procedures, J. Amer. Statist. Assoc. 62 (1967), no. 317, 86–101.
[32] H.W. Kuhn, The Hungarian method for the assignment problem, Naval Res. Logistics Quart. 2 (1955), no. 1-2, 83–97.
[33] B. Larsen and C. Aone, Fast and effective text mining using linear-time document clustering, Proc. Fifth ACM SIGKDD Int. Conf. Knowledge Disc. Data Min., 1999, pp. 16–22.
[34] T. Li and C. Ding, Weighted consensus clustering, Proc. SIAM Int. Conf. Data Min., SIAM, 2008, pp. 798–809.
[35] X. Lu, Y. Yang, and H.Wang, Selective clustering ensemble based on covariance, Int.Workshop Multiple Classifier Syst., Springer, 2013, pp. 179–189.
[36] J. MacQueen, Classification and analysis of multivariate observations, 5th Berkeley Symp. Math. Statist. Probability, 1967, pp. 281–297.
[37] S. Mimaroglu and M. Yagci, Clicom: Cliques for combining multiple clusterings, Expert Syst. Appl. 39 (2012), no. 2, 1889–1901.
[38] B. Minaei-Bidgoli, A. Topchy, and W.F. Punch, Ensembles of partitions via data resampling, Int. Conf. Inf. Technol.: Cod. Comput., 2004. Proc. ITCC 2004., vol. 2, IEEE, 2004, pp. 188–192.
[39] S. Nejatian, H. Parvin, and E. Faraji, Using sub-sampling and ensemble clustering techniques to improve performance of imbalanced classification, Neurocomput. 276 (2018), 55–66.
[40] C.F. Olson, Parallel algorithms for hierarchical clustering, Parallel Comput. 21 (1995), no. 8, 1313–1325.
[41] Y. Ren, C. Domeniconi, G. Zhang, and G. Yu, Weighted-object ensemble clustering: Methods and analysis, Knowledge Inf. Syst. 51 (2017), no. 2, 661–689.
[42] N.C. Sandes and A.L.V. Coelho, Clustering ensembles: A hedonic game theoretical approach, Pattern Recogn. 81 (2018), 95–111.
[43] C.P. Santos, Desiree Maldonado Carvalho, and Maria CV Nascimento, A consensus graph clustering algorithm for directed networks, Expert Syst. Appl. 54 (2016), 121–135.
[44] A.J.C. Sharkey, Combining artificial neural nets: Ensemble and modular multi-net systems, Springer Science & Business Media, 2012.
[45] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Machine Intel. 22 (2000), no. 8, 888–905.
[46] R. Sibson, Slink: An optimally efficient algorithm for the single-link cluster method, Comput. J. 16 (1973), no. 1, 30–34.
[47] A. Strehl and J. Ghosh, Cluster ensembles—a knowledge reuse framework for combining multiple partitions, J. Machine Learn. Res. 3 (2002), no. Dec, 583–617.
[48] A. Topchy, A.K. Jain, and W. Punch, Combining multiple weak clusterings, Third IEEE Int. Conf. Data Min., IEEE, 2003, pp. 331–338.
[49] A. Topchy, A.K. Jain, and W. Punch, A mixture model for clustering ensembles, Proc. SIAM Int. Conf. Data Min., SIAM, 2004, pp. 379–390.
[50] A. Topchy, A.K. Jain, and W. Punch, Clustering ensembles: Models of consensus and weak partitions, IEEE Trans. Pattern Anal. Machine Intel. 27 (2005), no. 12, 1866–1881.
[51] S. Vega-Pons and J. Ruiz-Shulcloper, A survey of clustering ensemble algorithms, Int. J. Pattern Recogn. Artific. Intel. 25 (2011), no. 3, 337–372 [52] X. Wang, D. Han, and C. Han, Rough set based cluster ensemble selection, Proc. 16th int. Conf. Inf. Fusion, IEEE, 2013, pp. 438–444.
[53] J. Wu, H. Liu, H. Xiong, J. Cao, and J. Chen, K-means-based consensus clustering: A unified view, IEEE Trans. Knowledge Data Engin. 27 (2014), no. 1, 155–169.
[54] X. Wu, T. Ma, J. Cao, Y. Tian, and A. Alabdulkarim, A comparative study of clustering ensemble algorithms, Comput. Electric. Engin. 68 (2018), 603–615.
[55] F. Yang, X. Li, Q. Li, and T. Li, Exploring the diversity in cluster ensemble generation: Random sampling and random projection, Expert Syst. Appl. 41 (2014), no. 10, 4844–4866.
[56] Z. Yu, L. Li, J. Liu, J. Zhang, and G. Han, Adaptive noise immune cluster ensemble using affinity propagation, IEEE Trans. Knowledge Data Engin. 27 (2015), no. 12, 3176–3189.
[57] Z. Yu and H.-S. Wong, Class discovery from gene expression data based on perturbation and cluster ensemble, IEEE Trans. Nanobiosci. 8 (2009), no. 2, 147–160.
[58] X. Zhao, F. Cao, and J. Liang, A sequential ensemble clusterings generation algorithm for mixed data, Appl. Math. Comput. 335 (2018), 264–277.
[59] L. Zheng, T. Li, and C. Ding, A framework for hierarchical ensemble clustering, ACM Trans. Knowledge Disc. From Data (TKDD) 9 (2014), no. 2, 1–23.
[60] S. Zhong and J. Ghosh, A comparative study of generative models for document clustering, Proc. Workshop Cluster. High Dimens. Data Appl. SIAM Data Min. Conf., Citeseer, 2003.