[1] S. Akhmanov and N. Koroteev, Spectroscopy of light scattering and nonlinear optics. Nonlinear-optical methods of active spectroscopy of Raman and Rayleigh scattering, Soviet Phys. Uspekhi 20 (1977), no. 11, 899–936.
[2] D. Ayll´on, R. Gil-Pita, P. Jarabo-Amores and M. Rosa-Zurera, Speech source separation using a generalized mean shift algorithm, Signal Process. 92 (2012), no. 9, 2248–2252.
[3] N.M.D. Brown and P. Bladon, Spectroscopy and structure of (1, 3-diketonato) boron difluorides and related compounds, J. Chem. Soc. A: Inorg. Phys. Theor. (1969), 526–532.
[4] P. Cadusch, M. Hlaing, S.A. Wade, S.L. McArthur and P.R. Stoddart, Improved methods for fluorescence background subtraction from Raman spectra, J. Raman Spect. 44 (2013), no. 11, 1587–1595.
[5] T. Cai, D. Zhang and D. Ben–Amotz, Enhanced chemical classification of Raman images using multiresolution wavelet transformation, Appl. Spect. 55 (2001), no. 9, 1124–1130.
[6] J. Chan, S. Fore, S. Wachsmann-Hogiu and T. Huser, Raman spectroscopy and microscopy of individual cells and cellular components, Laser Photonics Rev. 2 (2008), no. 5, 325–349.
[7] H. Chen, W. Xu, N. Broderick and J. Han, An adaptive denoising method for Raman spectroscopy based on lifting wavelet transform, J. Raman Spect. 49 (2018), no. 9, 1529–1539.
[8] J. Coupland, Optical signal processing—Fundamentals, Optics Amp Laser Technol. 24 (1992), no. 5, p. 305.
[9] J.D.A. Espinoza, V. Sazhnikov, S. Sabik, D. Ionov, E. Smits, S. Kalathimekkad, G. Van Steenberge, M. Alfimov, M. Po´sniak, E. Dobrzy´nska and M. Szewczy´nska, Flexible optical chemical sensor platform for BTX, Proc. Eng. 47 (2012), 607–610.
[10] J.C. Goswami and A.K. Chan, Fundamentals of wavelets: theory, algorithms, and applications, John Wiley &Sons, 2011.
[11] V. Goyal, Theoretical foundations of transform coding, IEEE Signal Process. Mag. 18 (2001), no. 5, 9–21.
[12] R. Heinrich, A. Popescu, A. Hangauer, R. Strzoda and S. H¨ofling, High performance direct absorption spectroscopy of pure and binary mixture hydrocarbon gases in the 6–11$$\upmu $$ µ m range, Appl. Phys. B 123 (2017), no. 8, 1–9.
[13] W. Huang, R.I. Griffiths, I.P. Thompson, M.J. Bailey and A.S. Whiteley, Raman microscopic analysis of single microbial cells, Anal. Chem. 76 (2004), no. 15, 4452–4458.
[14] D. Ionov, G. Yurasik, Y. Kononevich, V. Sazhnikov, A. Muzafarov and M. Alfimov, Simple fluorescent sensor for simultaneous selective quantification of benzene, toluene and xylene in a multicomponent mixture, Proc. Eng. 168 (2016), 341–345.
[15] A.I.Z. Khalaf, M. Alboedam, H.J. Abidalhussein and A.Z.S. Hassan, The role of blood proteins and nucleic acids in the detection of multiple Myeloma based on Raman spectroscopy, EurAsian J. BioSci. 14 (2020), no. 1, 1955–1963.
[16] A.I.Z. Khalaf, M. Alboedam, H.J. Abidalhussein and A.Z.S. Hassan, Detecting levels amino acids for proteins of different for patients with myeloma and comparing them using a portable Raman spectrometer, EurAsian J. BioSci. 14 (2020), 2029–2036.
[17] M.D. Morris, Review - modern Raman spectroscopy: a practical approach, Anal. Chem. 78 (2006), no. 1, p. 33.
[18] P. Mosier-Boss, S. Lieberman and R. Newbery, Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques, Appl. Spectr. 49 (1995), no. 5, 630–638.
[19] J. Motz, S.J. Gandhi, O.R. Scepanovic, A.S. Haka, J.R. Kramer Jr, R.R. Dasari and M.S. Feld, Real-time Raman system for in vivo disease diagnosis, J. Biomed. Optics 10 (2005), no. 3, 031113.
[20] A. O’Grady, C. Dennis, D. Denvir, J.J. McGarvey and S.E. Bell, Quantitative Raman spectroscopy of highly fluorescent samples using pseudosecond derivatives and multivariate analysis, Anal. Chem. 73 (2001), no. 9, 2058–2065.
[21] T. Ouyang, C. Wang, Z. Yu, R. Stach, B. Mizaikoff, B. Liedberg, G. Huang and Q. Wang, Quantitative analysis of gas phase IR spectra based on extreme learning machine regression model, Sensors 19 (2019), no. 24, 1–20.
[22] M. Posp´ıˇsilov´a, G. Kuncov´a and J. Tr¨ogl, Fiber-optic chemical sensors and fiber-optic bio-sensors, Sensors 15 (2015), no. 10, 25208–25259.
[23] S. Saint-Jalm, P. Berto, L. Jullien, E. Andresen and H. Rigneault, Rapidly tunable and compact coherent Raman scattering light source for molecular spectroscopy, J. Raman Spectr. 45 (2014), no. 7, 515–520.
[24] J. Schnur, Sequence-based pathogen diagnostics and surveillance, Nanomed.: Nanotechnol. Biol. Med. 2 (2006), no. 4, 272.
[25] I.V. Stasyuk and T.S. Mysakovych, Raman light scattering for systems with strong short-range interaction, Condensed Matter Phys. 3 (2000), no. 1, p. 183.
[26] M. Strehle, P. Roesch, R. Petry, A. Hauck, R. Thull, W. Kiefer and J. Popp, A Raman spectroscopic study of the adsorption of fibronectin and fibrinogen on titanium dioxide nanoparticles, Phys. Chem. Chem. Phys. 6 (2004), no. 22, 5232–5236.
[27] S. Tseng, Modeling the sub-diffraction focusing phenomenon of light propagation through scattering medium, Methods 136 (2018), 75–80.
[28] S.B. Twiss, D.M. Teague, J.W. Bozek and M.V. Sink, Application of infrared spectroscopy to exhaust gas analysis, J. Air Pollut. Control Assoc. 5 (1955), no. 2, 75–83.
[29] D. Wilson, The median-median line, Math. Teacher 104 (2010), no. 4, 262–267.
[30] O. Wolfbeis, Fiber-optic chemical sensors and biosensors, Anal. Chem. 78 (2006), no. 12, 3859–3874.
[31] A. Zeyad, M. Alboedam, I. Katanov and A. Sura, Application of mathematical models and digital filters and their processors of spectral analysis for aromatic compounds gas in a fluorescent chemical, Int. J. Nonlinear Anal. Appl. 12 (2021), 109–122.
[32] A. Zeyad, M. Alboedam, I. Katanov and A. Sura, Detecting levels and innovative applications for the detection of aromatic compounds using multivariate curve analysis and spectroscopy data, Neuro Quantol. 19 (2021), no. 3, 46–55.