[1] A. Abkar and M. Gabeleh, Best proximity point for cyclic mappings in ordered metric spaces, J. Optim. Theo. Appl. 151 (2011), 418–424.
[2] M.A. Al-Thafai and N. Shahzad, Convergence and existence for best proximity points, Nonlinear Anal. 70 (2009), 3665–3671.
[3] M.J. Anuradha and P. Veeramani, Proximal pointwise contraction, Topology Appl. 156 (2009), 2942–2948.
[4] A.A. Eldred, W.A. Kirk and P. Veeramani, Proximal normal structure and relatively nonexpansive mapping, Studia Math. 171 (2005), 283—293.
[5] A.A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323 (2006), 1001–1006.
[6] R. Espinola, A new approach to relatively nonexpansive mappings, Proc. Amer. Math. Soc. 136 (2008), 1987–1995.
[7] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234–240.
[8] M. Gabeleh and G.S.R. Kosuru, Some remarks on convergence of best proximity points and semi-cyclic contractions, Rend. Circ. Mat. Palermo, II. Ser, doi:org/10.1007/s12215-022-00809-9.
[9] E. Karapinar, Best proximity points of cyclic mappings, Appl. Math. Lett. 25 (2012), 1761–1766.
[10] E. Karapinar, P. Agarwal, S. S. Yesilkaya and C. Wang, Fixed point results for Meir-Keeler type contractions in partial metric spaces: A survey, Mathematics 10 (2022), 1–76.
[11] G.S.R. Kosuru and P. Veeramani, A note on existence and convergence of best proximity points for pointwise cyclic contractions, Num. Funct. Anal. Optim. 32 (2013), 821–830.
[12] J.J. Nieto and R. Rodrıguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223–239.
[13] M. Rossafi and Abdelkarim Kari, Fixed point for weakly contractive mappings in rectangular b-metric space, Int. J. Nonlinear Anal. Appl. 14 (2022), 763—783.
[14] T. Suzuki, M. Kikkawa and C. Vetro, The existence of best proximity points in metric spaces with the property UC, Nonlinear Anal. 71 (2009), 2918–2926.