[1] M. Achache and N.Tabchouche, Complexity analysis and numerical implementation of large-update interior-point methods for SDLCP based on a new parametric barrier kernel function, Optimization 67 (2018), no. 8, 1–20.
[2] Y.Q. Bai, M. El Ghami and C. Roos, A primal-dual interior-point method for linear optimization based on a new proximity function, Optim. Meth. Software 17 (2002), no. 6, 985–1008.
[3] Y.Q. Bai, M. El Ghami and C. Roos, A comparative study of kernel function for primal-dual interior point algorithms in linear optimization, SIAM J. Optim. 15 (2004), no. 1, 101–128.
[4] H. Barsam and H. Mohebi, Characterizations of upward and downward sets in semimodules by using topical functions, Numer. Funct. Anal. Optim. 37 (2016), no. 11, 1354-1377.
[5] A. Benhadid, K. Saoudi and F. Merahi, An interior point approach for linear complementarity problem using new parametrized kernel function, Optimization 71 (2022), no. 15, 4403–4422.
[6] A. Benhadid and F. Merahi, Complexity analysis of an interior-point algorithm for linear optimization based on a new parametric kernel function with a double barrier term, Numer. Algebra Control Optim. 13 (2023), no. 2, 224–238.
[7] M. Bouafia, D. Benterki and A. Yassine, An efficient parameterized logarithmic kernel function for linear optimization, Optim. Lett. 12 (2018), no. 5, 1079-1097.
[8] E. De Klerk, Aspects of Semidefinite Programming, Applied Optimization. vol. 65. Kluwer Academic, Dordrecht, 2002.
[9] L. Derbal and Z Kebbiche, Theoretical and numerical result for linear optimization problem based on a new kernel function, J. Sib. Federal Univer. Math. Phys. 12 (2019), no. 2, 160–172.
[10] M. El Ghami, Primal-dual algorithms for semidefinite optimization problems based on generalized trigonometric barrier function, Int. J. Pure Appl. Math. 114 (2017), no. 4, 797–818.
[11] R.A. Horn and R.J. Charles, Matrix Analysis, Compridge University Press, UK, 1986.
[12] J. Peng, C. Roos and T. Terlaky, Self-regularity: A New Paradigm for Primal-dual Interior-point Algorithms, New Jersey, Princeton University Press, 2002.
[13] J. Peng, C. Roos and T. Terlaky, Self-regular proximities and new search directions for linear and semidefinite optimization, Math. Program.. 93 (2002), no. A, 129–171.
[14] C. Roos, T. Terlaky and J.P. Vial, Theory and algorithms for linear optimization: An interior point approach, John Wiley & Sons, Chichester, UK, 1997.
[15] M.J. Todd, K.C. Toh and R.H. T¨ut¨unc¨u, The Nesterov-Todd direction in semidefinite programming, mathematical programming, SIAM J. Optim. 8 (1998), no. 3, 769–796.
[16] M.J. Todd, A study of search directions in primal-dual interior-point methods for semidefinite programming, Optim. Meth. Softw. 11 (1999), 1–46.
[17] G.Q. Wang, Y.Q. Bai and C. Roos, Primal-dual interior point algorithms for semidefinite optimization based on a simple kernel function, J. Math. Model. Algorithms 4 (2005), no. 4, 409–433.
[18] G.Q. Wang and Y.Q. Bai, A class of polynomial primal-dual interior-point algorithms for semidefinite optimization, J. Shanghai University (English Edition) 10 (2006), no. 3, 198–207.
[19] H. Wolkowicz, R. Saigal and L. Vandenberghe, Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, Dordrecht, Kluwer Academic Publishers, 2000.
[20] M.W. Zhang, A large-update interior-point algorithm for convex quadratic semi-definite optimization based on a new kernel function, Acta Math. Sinica English Ser. 28 (2012), no. 11, 2313–2328.