[1] F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ. 81 (1973), 637–654.
[2] J.C. Hull, Options, futures, and other derivatives, Pearson, USA, 2006.
[3] R.M. Jena, S. Chakraverty, and D. Baleanu, A novel analytical technique for the solution of time-fractional Ivancevic option pricing model, Phys. A: Stat. Mech. Appl. 550 (2020), 124380.
[4] J. Voit, The statistical mechanics of financial markets, Springer, Berlin, 2001.
[5] O. Vukovic, Interconnectedness of Schrodinger and Black-Scholes Equation, J. Appl. Math. Phys. 3 (2015), no. 9, 1108–1113.
[6] A.H. Davison and S. Mamba, Symmetry methods for option pricing, Commun. Nonlinear Sci. Numer. Simul. 47 (2017), 421–425.
[7] Y. Chatibi, E.H.E Kinani, and A. Ouhadan, Lie symmetry analysis and conservation laws for the time fractional Black–Scholes equation, Int. J. Geom. Meth. Mod. Phys. 17 (2020), no. 01, 2050010.
[8] M. Bohner and Y. Zheng, On analytical solutions of the Black–Scholes equation, Appl. Math. Lett. 22 (2009), no. 3, 309–313.
[9] P. Sawangtong, K. Trachoo, W. Sawangtong, and B. Wiwattanapataphee, The analytical solution for the BlackScholes equation with two assets in the Liouville-Caputo fractional derivative sense, Mathematics 6 (2018), no. 8, 129.
[10] S.O. Edeki, O.O. Ugbebor, and E.A. Owoloko, Analytical solutions of the Black–Scholes pricing model for European option valuation via a projected differential transformation method, Entropy 17 (2015), no. 11, 7510–7521.
[11] F. Mehrdoust and M. Mirzazadeh, On analytical solution of the black-scholes equation by the first integral method, U.P.B. Sci. Bull., Series A. 76 (2014), no. 4, 85–90.
[12] V.G. Ivancevic, Adaptive-wave alternative for the Black-Scholes option pricing model, Cogn. Comput. 2 (2009), 17–30.
[13] U. Obaidullah and S. Jamal, On the formulaic solution of a (n+1)th order differential equation, Int. J. Appl. Comput. Math. 7 (2021) no. 58, 1–15.
[14] U. Obaidullah and S. Jamal, A computational procedure for exact solutions of Burgers’ hierarchy of nonlinear partial differential equations, J. Appl. Math. Comput. 65 (2021), 541-–551.
[15] S. Jamal and A. Paliathanasis, Approximate symmetries and similarity solutions for wave equations on liquid films, Appl. Anal. Discrete Math. 14 (2020), no. 2, 349–363.
[16] A.R. Adem, Symbolic computation on exact solutions of a coupled Kadomtsev–Petviashvili equation: Lie symmetry analysis and extended tanh method, Comput. Math. Appl. 74 (2017), no. 8, 1897–1902.
[17] S. Mbusi, B. Muatjetjeja, and A.R. Adem, On the exact solutions and conservation laws of a generalized (1+2) dimensional Jaulent-Miodek equation with a power law nonlinearity, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 1, 1721 1735.
[18] A.R. Adem, A (2+1)-dimensional Korteweg–de Vries type equation in water waves: Lie symmetry analysis; multiple exp-function method; conservation laws, Int. J. Mod. Phys. B. 30 (2016), 1640001.
[19] A.R. Adem and B. Muatjetjeja, Conservation laws and exact solutions for a 2D Zakharov–Kuznetsov equation, Appl. Math. Lett. 48 (2015), 109–117.
[20] M.C. Moroke, B. Muatjetjeja, and A.R. Adem, A generalized (2 + 1)-dimensional Calogaro–Bogoyavlenskii–Schiff equation: Symbolic computation, symmetry reductions, exact solutions, conservation laws, Int. J. Appl. Comput.Math. 7 (2021), 134.
[21] T.J. Podile, B. Muatjetjeja and A.R. Adem, Conservation laws and exact solutions of a generalized (2+1)- dimensional Bogoyavlensky-Konopelchenko equation, Int. J. Nonlinear Anal. Appl. 12 (2021), 709–718.
[22] U. Obaidullah and S. Jamal, pp-wave potential functions: A complete study using Noether symmetries, Int. J. Geom. Meth. Mod. Phys. 18 (2021), no. 7, 2150108.
[23] U. Obaidullah, S. Jamal, and G Shabbir Analytical field equation and wave function solutions of the Bianchi type I universe in vacuum f(R) gravity, Int. J. Geom. Meth. Mod. Phys. 19 (2022), no. 9, 2250136.
[24] S. Jamal and G. Shabbir, Potential Functions Admitted by Well-Known Spherically Symmetric Static Spacetimes, Rep. Math. Phys. 81 (2018), no. 02, 201-212.
[25] U. Obaidullah and S. Jamal, Classical solutions to Bianchi type II spacetimes in f(R) theory of gravity, Indian J. Phys. 96 (2022), no. 12, 3675—3688.
[26] O. Gonz´alez-Gaxiola, S. O. Edeki, O. O. Ugbebor, and J.R. Ch’avez, Solving the Ivancevic pricing model Using the He’s frequency amplitude formulation, Eur. J. Pure Appl. 10 (2017), no. 4, 631–637.
[27] S.O. Edeki, O.O. Ugbebor, and O. Gonz´alez-Gaxiola, Analytical solutions of the Ivancevic option pricing model with a nonzero adaptive market potential, Int. J. Appl. Math. Phys. 115 (2017), no. 1, 187–198.
[28] Y.Q. Chen, Y-H. Tang, J. Manafian, H. Rezazadeh, and M.S. Osman, Dark wave, rogue wave and perturbation solutions of Ivancevic option pricing model, Nonlinear Dyn. 105 (2021), 2539–2548.