[1] M.A.E. Abdelrahman and M.A. Sohaly, The development of the deterministic nonlinear PDEs in particle physics to stochastic case, Results Phys. 9 (2018), 344–350.
[2] A. Ali, S. Ahmad, I. Hussain, H. Khan, and S. Bushnaq, Numerical simulation of nonlinear parabolic type Volterra partial integro-differential equations using quartic B-spline collocation method, Nonlinear Stud. 27 (2020), no. 3.
[3] M. Antonova and A. Biswas, Adiabatic parameter dynamics of perturbed solitary waves, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), no. 3, 734–748.
[4] G. Arora, R.C. Mittal, and B.K. Singh, Numerical solution of BBM-Burger equation with quartic B-spline collocation method, J. Engin. Sci. Technol. 9 (2014), 104–116.
[5] R.E. Bellman and R.E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems, New York, Elsevier, 1965.
[6] A.H. Bhrawy, An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system, Appl. Math. Comput. 247 (2014), 30–46.
[7] M. Dosti and A. Nazemi, Quartic B-spline collocation method for solving one-dimensional hyperbolic telegraph equation, J. Inf. Comput. Sci. 7 (2012), no. 2, 83–90.
[8] S. Foadian, R. Pourgholi, and S. Hashem Tabasi, Cubic B-spline method for the solution of an inverse parabolic system, Appl. Anal. 97 (2018), no. 3, 438–465.
[9] Z. Fu, S. Liu, and S. Liu, New kinds of solutions to Gardner equation, Chaos Solitons Fractals 20 (2004), no. 2, 301–309.
[10] L. Girgis and A. Biswas, A study of solitary waves by He’s semi-inverse variational principle, Waves Random Complex Media 21 (2011), no. 1, 96–104.
[11] CA Hall, On error bounds for spline interpolation, Journal of approximation theory 1 (1968), no. 2, 209–218.
[12] Mohan K Kadalbajoo, Alpesh Kumar, and Lok Pati Tripathi, A radial basis functions based finite differences method for wave equation with an integral condition, Applied Mathematics and Computation 253 (2015), 8–16.
[13] K. Konno and Y. H. Ichikawa, A modified Korteweg de Vries equation for ion acoustic waves, J. Phys. Soc. Jap. 37 (1974), no. 6, 1631–1636.
[14] E.V. Krishnan, H. Triki, M. Labidi, and A. Biswas, A study of shallow water waves with Gardner’s equation, Nonlinear Dyn. 66 (2011), no. 4, 497–507.
[15] W. Malfliet and W. Hereman, The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Phys. Scripta 54 (1996), no. 6, 563.
[16] RC Mittal and Rajni Rohila, The numerical study of advection–diffusion equations by the fourth-order Cubic B-spline collocation method, Math. Sci. 14 (2020), no. 4, 409–423.
[17] M.N.B. Mohamad, Exact solutions to the combined KdV and MKdV equation, Math. Meth. Appl. Sci. 15 (1992), no. 2, 73–78.
[18] P. Razborova, B. Ahmed, and A. Biswas, Solitons, shock waves and conservation laws of Rosenau-KdV-RLW equation with power law nonlinearity, Appl. Math. Inf. Sci. 8 (2014), no. 2, 485.
[19] W. Rudin, Principles of Mathematical Analysis, vol. 3, McGraw-Hill New York, 1976.
[20] A. Saeedi, S. Foadian, and R. Pourgholi, Applications of two numerical methods for solving inverse Benjamin–Bona–Mahony–Burgers equation, Engin. Comput. (2019), 1–14.
[21] A. Saeedi and R. Pourgholi, Application of quintic B-splines collocation method for solving inverse Rosenau equation with Dirichlet’s boundary conditions, Engin. Comput. 33 (2017), no. 3, 335–348.
[22] G.D. Smith, Numerical Solution of Partial Differential equations: Finite Difference Methods, Oxford University Press, 1985.
[23] J. von Neumann and R.D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys. 21 (1950), no. 3, 232–237.
[24] S. Wang and L. Zhang, Split-step Cubic B-spline collocation methods for nonlinear Schrodinger equations in one, two, and three dimensions with Neumann boundary conditions, Numerical Algorithms 81 (2019), no. 4, 1531–1546.
[25] M. Wasim, and I. Abbas and M.K. Iqbal, Numerical solution of modified forms of Camassa-Holm and Degasperis-Procesi equations via quartic B-spline collocation method, Commun. Math. Appl. 9 (2018), no. 3, 393–409.
[26] A.-M. Wazwaz, New solitons and kink solutions for the Gardner equation, Commun. Nonlinear Sci. Numer. Simul. 12 (2007), no. 8, 1395–1404.
[27] G.-Q. Xu, Z.-B. Li, and Y.-P. Liu, Exact solutions to a large class of nonlinear evolution equations, Chinese J. Phys. 41 (2003), no. 3, 232–241.
[28] Z. Yan, Jacobi elliptic function solutions of nonlinear wave equations via the new Sinh-Gordon equation expansion method, J. Phys. A: Math. Gen. 36 (2003), no. 7, 1961.
[29] M. Younis, S. Ali, and S.A. Mahmood, Solitons for compound KdV–Burgers equation with variable coefficients and power law nonlinearity, Nonlinear Dyn. 81 (2015), no. 3, 1191–1196.