[1] K. Aoyama and F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in banach spaces, Nonlinear Anal.: Theory, Meth. Appl. 74 (2011), no. 13, 4387–4391.
[2] L. Arnold, Random Dynamical Systems, Springer Science & Business Media, 1991.
[3] L. Arnold and I. Chueshov, Order-preserving random dynamical systems: equilibria, attractors, applications, Dyn. Stabil. Syst. 13 (1998), no. 3, 265–280.
[4] S. Atailia, N. Redjel, and A. Dehici, Some fixed point results for generalized contractions of suzuki type in banach spaces, J. Fixed Point Theory Appl. 21 (2019), no. 3, 78.
[5] I. Chueshov, Monotone Random Systems Theory and Applications, Springer-Verlag Berlin Heidelberg New York, 2002.
[6] I.J. Kadhim and A.H. Khalil, On expansive random operators over a uniform random dynamical systems, Eur. J. Sci. R. 142 (2016), no. 4, 334–342.
[7] R. Pant, P. Patel, R. Shukla, and M. De la Sen, Fixed point theorems for nonexpansive type mappings in Banach spaces, Symmetry 13 (2021), no. 4, 585.
[8] K.R. Schenk-Hopp´e, Random attractors–general properties, existence and applications to stochastic bifurcation theory, Discrete Contin. Dyn. Syst. 4 (1997), no. 1, 99–130.