[1] E.G. Bazhlekova and I.H. Dimovski, Exact solution for the fractional cable equation with nonlocal boundary conditions, Cent. Eur. J. Phys. 11 (2013), 1304–1313.
[2] D. A. Benson, S. W. Wheatcraft and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resources Res. 36 (2000), no. 6, 1403–1412.
[3] J. Bisquert, Fractional diffusion in the multiple-trapping regime and revision of the equivalence with the continuous-time random walk, Phys. Rev. Lett. 91 (2003), no. 1, Article ID: 010602.
[4] M. Caputo, Elasticita e Dissipazione, Zanichelli , Bologna, 1969.
[5] A.S. Chaves, A fractional diffusion equation to describe Levy flights, Phys. Lett. A 239 (1998), 13–16.
[6] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, vol. 3, McGraw-Hill, New York, Toronto and London, 1955.
[7] B.I. Henry, T.A.M. Langlands and S.L. Wearne, Fractional cable models for spiny neuronal dendrites, Phys. Rev. Lett. 100 (2008), no. 12, Article ID: 128103.
[8] B.I. Henry and S.L. Wearne, Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions, J. Math. Biol. 59 (2009), 761–808.
[9] R. Hilfer, Application of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[10] R. Hilfer, Y. Luchko and Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal. 12 (2009), no. 3, 299–318.
[11] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006.
[12] F. Huang and F. Liu, The space-time fractional diffusion equation with Caputo derivatives, J. Appl. Math. Comput. 19 (2005), 179–190.
[13] F. Huang and F. Liu, The time fractional diffusion equation and advection–dispersion equation, ANZIAM J. 46 (2005), 317–330.
[14] F. Huang and F. Liu, The fundamental solution of the space-time fractional advection-dispersion equation, J. Appl. Math. Comput. 18 (2005), 339–350.
[15] D. Kumar, On certain fractional calculus operators involving generalized Mittag-Leffler function, Sahand Commun. Math. Anal. 3 (2016), no. 2, 33–45.
[16] D. Kumar and S. Kumar, Fractional integrals and derivatives of the generalized Mittag-Leffler type function, Int. Sch. Res. Notices 2014 (2014), Article ID 907432.
[17] T.A.M. Langlands, B.I. Henry and S.L. Wearne, Fractional cable equation models for anomalous electrodiffusion in nerve cells: Finite domain solutions, SIAM J. Appl. Math. 71 (2011), 1168–1203.
[18] C. Li and W.H. Deng, Analytical solutions, moments, and their asymptotic behaviors for the time-space fractional cable equation, Commun. Theor. Phys. 62 (2014), no. 1, 54–60.
[19] F. Liu, V. Anh and I. Turner, Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math. 166 (2004), 209–219.
[20] F. Liu, S. Chen, I. Turner, K. Burrage and V. Anh, Numerical simulation for two-dimensional Riesz space
fractional diffusion equations with a nonlinear reaction term, Cent. Eur. J. Phys. 11 (2013), 1221–1232.
[21] F. Liu, Q. Yang and I. Turner, Two new implicit numerical methods for the fractional cable equation, J. Comput. Nonlinear Dynam. 6 (2011), no. 1, 101–109.
[22] F. Liu, P. Zhuang, V. Anh, I. Turner and K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput. 191 (2007), 12–20.
[23] A.M. Mathai and R.K. Saxena, Distribution of a product and the structural set up of densities, Ann. Math. Statist. 40 (1969), 1439–1448.
[24] A.M. Mathai, R.K. Saxena and H.J. Haubold, The H-Function: Theory and Applications, Springer, New York, NY, USA, 2010.
[25] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339 (2000), 1–77.
[26] G.M. Mittag-Leffler, Sur la nouvelle fonction E(x), C.R. Acad. Sci. Paris (Ser.II), 137 (1903), 554–558.
[27] G.M. Mittag-Leffler, Sur la representation analytique d’une fonction branche uniforme d’une fonction, Acta Math. 239 (1905), 101–181.
[28] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, USA, 1999.
[29] T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J. 19 (1971), 7–15.
[30] J. Ram and D. Kumar, Generalized fractional integration involving Appell hypergeometric of the product of two H -functions, Vijanana Parishad Anusandhan Patrika 54 (2011), no. 3, 33–43.
[31] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, London, UK, 1993.
[32] T. Sandev, R. Metzler and Z. Tomovski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, J. Phys. A: Math. Theor. 44 (2011), Article ID: 255203.
[33] R.K. Saxena, J. Ram and D. Kumar, Sumudu and Laplace transforms of the Aleph-function, Casp. J. Appl. Math. Ecol. Econ. 1 (2013), no. 2, 19–28.
[34] R.K. Saxena, Z. Tomovshi and T. Sandev, Analytical solution of generalized space-time fractional cable equation, Mathematics 3 (2015), 153–170.
[35] H.M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
[36] D.L. Suthar, D. Kumar and H. Habenom, Solutions of fractional kinetic equation associated with the generalized multi-index Bessel function via Laplace transform, Differ. Equ. Dyn. Syst. 28 (2019), 14 pages.
[37] Z. Tomovski, Generalized Cauchy type problems for nonlinear fractional differential equation with composite fractional derivative operator, Nonlinear Anal. 75 (2012), no. 7, 3364–3384.
[38] Z. Tomovski, T. Sandev, R. Metzler and J. Dubbeldam, Generalized space-time fractional diffusion equation with composite fractional time derivative, Phys. A 391 (2012), 2527–2542.
[39] A. Wiman, Uber den fundamental satz in der theorie der functionen E(x), Acta Math. 29 (1905), 191–201.
[40] M. Zheng, F. Liu, I. Turner and V. Anh, A novel high order space-time spectral method for the time-fractional Fokker–Planck equation, SIAM J. Sci. Comput. 37 (2015), A701–A724.