[1] H. Amann and J. Escher, Analysis III, Birkhauser Basel, 2009.
[2] R.B. Ash, Real analysis and probability, University of Illinois, Academics Press, 1972.
[3] R.B. Ash, Real analysis and probability, Academics Press, New York, 1992.
[4] J. Banasiak, Banach Lattices in Applications, University of Pretoria, Pretoria, South Africa, Available at https://www.up.ac.za/media/shared/259/Documents/Teaching%20material/ablbook.zp158048.pdf
[5] E. Blackstone and P. Mikusinski, The Daniell integral, arXiv:1401.0310v1[math.CA].
[6] G.A.M. Jeurnink, Integration of functions with Values in a Banach Lattice, Catholic university, Nijmegen, 1982.
[7] J.L. Kelley, General Topology, Van Nostrand Company Inc., 1955.
[8] S.S. Kutateladze, Nonstandard Analysis and Vector Lattices, Springer Science+Business Media Dordrecht, 2000.
[9] W.A.J. Luxemburg and A.C. Zaanen, Riesz Spaces, North-Holland Publishing Company, 1971.
[10] F.A. Noori, Measure Theory and Applications, Deposit number in the National Library and Archives in Baghdad, 1780. First edition, Iraq, 2018.
[11] A.A. Pedgaonkar, Daniell Integration for Banach Space Valued Vector Maps, Int. J. Latest Res. Sci. Technol. 4 (2015), no. 6, 21–23.
[12] R.E. Shermoen, An Introduction to General Integrals, M.S.C. thesis, the Faculty of the Oklahoma State University, 1965.
[13] D.H.Tucker and H.B. Maynard, Vector and Operator Valued Measures and Applications, University of Utah, 1973.
[14] E.M. Wadsworth, Daniell integral, Msc. thesis, University of Montana, 1965.
[15] M.R. Weber, Finite Elements in Vector Lattices, Walter de Gruyter GmbH, Berlin/Boston, 2014.
[16] A.C. Zaanem, Introduction to Operator Theory in Riesz Spaces, springer-Verlag Berlin Heidelberg, 1997.