[1] M. Analoui and M. Fadavi Amiri, Feature reduction of nearest neighbor classifiers using genetic algorithm, Proc. World Acad. Sci. Engin. Technol. 17 (2006), 36–39.
[2] V. Badrinarayanan, A. Kendall and R. Cipolla, SegNet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 39 (2017), no. 12, 2481–2495.
[3] G.J. Brostow, J. Shotton, J. Fauqueur and R. Cipolla, Segmentation and Recognition Using Structure from Motion Point Clouds, Forsyth, D., Torr, P., Zisserman, A. (eds) Computer Vision – ECCV 2008. ECCV 2008. Lecture Notes in Computer Science, vol 5302. Springer, Berlin, Heidelberg, 2008.
[4] L. Chen, J. Barron, G. Papandreou, K. Murphy and A. Yuille, Semantic image segmentation with task-specific edge detection using CNNS and a discriminatively trained domain transform, Proc. IEEE Conf. Comput. Vision Pattern Recog., 2016, pp. 4545–4554.
[5] L.C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A.L. Yuille, Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs, IEEE Trans. Pattern Anal. Machine Intell. 40 (2017), no. 4, 834–848.
[6] D. Ciresan, A. Giusti, L.M. Gambardella and J. Schmidhuber, Deep neural networks segment neuronal membranes in electron microscopy images, Adv. Neural Inf. Process. Syst. 25 (2012), 2843–2851.
[7] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth and B. Schiele, The cityscapes dataset for semantic urban scene understanding, Proc. IEEE Conf. Comput. Vision Pattern Recog. (CVPR), 2016, pp. 3213–3223.
[8] A. Ess, T. Muller, G. Grabner and L.J. Van Gool, Segmentation-based urban traffic scene understanding, BMVC 1 (2009).
[9] C. Farabet, C. Couprie, L. Najman and Y. LeCun, Learning hierarchical features for scene labelling, IEEE Trans. Pattern Anal. Machine Intell. 35 (2013), no. 8, 1915–1929.
[10] A. Geiger, P. Lenz and R. Urtasun, Are we ready for autonomous driving? the Kitti vision benchmark suite, IEEE Conf. Comput. Vision Pattern Recog., 2012, pp. 3354–3361.
[11] Y. Gordienko, P. Gang, J. Hui, W. Zeng, Y. Kochura, O. Alienin, O. Rokovyi and S. Stirenko, Deep learning with lung segmentation and bone shadow exclusion techniques for chest X-ray analysis of lung cancer, Int. Conf. Theory Appl. Fuzzy Syst. Soft Comput., Springer, 2018, pp. 638–647.
[12] S. Gupta, R. Girshick, P. Arbel´aez and J. Malik, Learning rich features from RGB-D images for object detection and segmentation, Computer Vision–ECCV 2014: 13th Eur. Conf., Zurich, Switzerland, September 6-12, 2014, Proceedings, Part VII 13, Springer International Publishing, 2014, pp. 345–360.
[13] P. Hariharan, P. Arbelae, R. Girshick and J. Malik, Simultaneous detection and segmentation, Eur. Conf. Comput. Vision, Springer, 2014, pp. 297–312.
[14] M. Hashemi, H. Hassanpour, E. Kozegar and T. Tan, Cystoscopy image classification using deep convolutional neural networks, Int. J. Nonlinear Anal. Appl. 10 (2019), no. 1, 193–215.
[15] M. Hashemi, H. Hassanpour, E. Kozegar and T. Tan, Cystoscopic image classification based on combining MLP and GA, Int. J. Nonlinear Anal. Appl. 11 (2019), no. 1, 93–105.
[16] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, Proc. IEEE Conf. Comput. Vision Pattern Recog., 2016, pp. 770–778.
[17] A. Krizhevsky, I. Sutskever and G.E. Hinton, ImageNet classification with deep convolutional neural networks, Adv. Neural Inf. Process. Syst. 25 (2012), 1097–1105.
[18] H. Li, P. Xiong, H. Fan and J. Sun, Dfanet: Deep feature aggregation for real-time semantic segmentation, Proc. IEEE Conf. Comput. Vision Pattern Recog., 2019, pp. 9522–9531.
[19] J. Long, E. Shelhamer and T. Darrell, Fully convolutional networks for semantic segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 79 (2014), no. 10, 1337–1342.
[20] M. Mostajabi, P. Yadollahpour, G. Shakhnarovich and A. Feedforward, Semantic segmentation with zoom-out features, Proc. Comput. Vision Pattern Recog., 2015, pp. 3376–3385.
[21] F. Ning, D. Delhomme, Y. LeCun, F. Piano, L. Bottou and E.P. Barbano, Toward automatic phenotyping of developing embryos from videos, IEEE Trans. Image Process. 14 (2005), no. 9, 1360–1371.
[22] M. Oberweger, P. Wohlhart and V. Lepetit, Hands deep in deep learning for hand pose estimation, arXiv preprint arXiv: 1502.06807. (2015).
[23] M. Orsi, I. Kreso, P. Bevandic and S. Segvic, In defence of pre-trained imagenet architectures for real-time semantic segmentation of road-driving images, Proc. IEEE Conf. Comput. Vision Pattern Recog., 2019, pp. 12607–12616.
[24] A. Paszke, A. Chaurasia, S. Kim and E. Culurciello, ENet: A deep Neural Network Architecture for Real-Time Semantic Segmentation, 7 Jun 2016, in Computer Vision and Pattern Recognition (cs.CV) arXiv:1606.02147 [cs.CV]. 2016.
[25] P. Pirozmand, M. Fadavi Amiri, F. Kashanchi and N. Yugeeta Layne, Age estimation, a Gabor PCA-LDA approach, J. Math. Comput. Sci. 2 (2011), no. 2, 233–240.
[26] O. Ronneberger, P. Fischer and T. Brox, U-net: convolutional networks for biomedical image segmentation, Int. Conf. Med. Image Comput. Comput.-Assis. Interven., Springer, 2015, pp. 234–41.
[27] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv: 1409.1556, 2014.
[28] K. Socha and M. Dorigo, Ant colony optimization for continuous domains, Eur. J. Oper. Res. 185 (2005), no. 3, 1155–1173.
[29] P. Sturgess, K. Alahari, L. Ladicky and P.H.S. Torr, Combining appearance and structure from motion features for road scene understanding, BMVC-British Machine Vision Conf., BMVA, 2009.
[30] W. Szegedy, Y. Liu, P. Jia, S. Sermanet, D. Reed, D. Anguelov, V. Erhan, V. Vanhoucke and A. Rabinovich, Going deeper with convolutions, Proc. IEEE Conf. Comput. Vision Pattern Recog., 2015, pp. 1–9.
[31] J. Tighe and S. Lazebnik, SuperParsing: Scalable nonparametric image parsing with superpixels, Daniilidis, K., Maragos, P., Paragios, N. (eds) Computer Vision – ECCV 2010. ECCV 2010, Lecture Notes in Computer Science, vol 6315, Springer, Berlin, Heidelberg, 2010.
[32] F. Visin, M. Ciccone, A. Romero, K. Kastner, K. Cho, Y. Bengio, M. Matteucci and A. Courville, ReSeg: A recurrent neural network-based model for semantic segmentation, Proc. IEEE Conf. Comput. Vision Pattern Recog. Workshops, 2016, pp. 41–48.
[33] J. Wan, D. Wang, S.C.H. Hoi, P. Wu, J. Zhu, Y. Zhang and J. Li, Deep learning for content-based image retrieval: A comprehensive study, Proc. 22nd ACM Int. Conf. Multimedia, ACM, 2014, pp. 157—166.
[34] Y. Yang, Z. Li, L. Zhang, C. Murphy, J. Ver Hoeve and H. Jiang, Local Label Descriptor for Example-Based Semantic Image Labeling, Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds) Computer Vision – ECCV 2012. ECCV 2012, Lecture Notes in Computer Science, vol 7578, Springer, Berlin, Heidelberg, 2012.
[35] Y. Yoon, H.G. Jeon, D. Yoo, J.Y. Lee and I. So Kweon, Learning a deep convolutional network for light-field image super-resolution, Proc. IEEE Int. Conf. Comput. Vision Workshops, 2015, pp. 24–32.
[36] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu and N. Sang, Bisenet: Bilateral segmentation network for real-time semantic segmentation, Proc. Eur. Conf. Comput. Vision (ECCV), 2018a, pp. 325–341.
[36] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu and N. Sang, Learning a discriminative feature network for semantic segmentation, Proc. IEEE Conf. Comput. Vision Pattern Recognition, 2018b, pp. 1857–1866.
[38] M.D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks, Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014, Lecture Notes in Computer Science, vol 8689. Springer, Cham, 2014.
[39] C. Zhang, L. Wang and R. Yang, Semantic segmentation of urban scenes using dense depth maps, Computer Vision–ECCV 2010: 11th Euro. Conf. Comput. Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV 11. Springer Berlin Heidelberg, 2010, pp. 708–721.
[40] Y.J. Zhang, Influence of segmentation over feature measurement, Pattern Recog. Lett. 16 (1995), no. 2, 201–206.
[41] H. Zhao, J. Shi, X. Qi, X. Wang and J. Jia, Pyramid scene parsing network, Proc. IEEE Conf. Comput. Vision Pattern Recog., 2017, pp. 2881–2890.
[42] Sh. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Zh. Su, D. Du, Ch. Huang, and Ph.H.S. Torr, Conditional random fields as recurrent neural networks, On 11 Feb 2015 arXiv:1502.03240 [cs.CV].