[1] H. Bousqaoui, S. Achchab, and K. Tikito, Machine learning applications in supply chains: An emphasis on neural network applications, 3rd Int. Conf. Cloud Comput. Technol. Appl. (CloudTech), IEEE, 2017, pp. 1–7.
[2] H. Bousqaoui, S. Achchab, and K. Tikito, Machine learning applications in supply chains: Long short-term memory for demand forecasting, Cloud Comput. Big Data: Technol. Appl. Secur.3, Springer, 2019, pp. 301–317.
[3] M.H. Fazel Zarandi and F. Shabany Moghadam, Fuzzy knowledge-based token-ordering policies for bullwhip effect management in supply chains, Knowledge Inf. Syst. 50 (2017), 607–631.
[4] J. Feizabadi, Machine learning demand forecasting and supply chain performance, Int.J. Logistics Res. Appl. 25 (2022), no. 2, 119–142.
[5] E. Fradinata, Z. M. Kesuma, and S. Rusdiana, Support vector regression and adaptive neuro-fuzzy to measure the bullwhip effect in supply chain, Journal of Physics: Conference Series, vol. 1116, IOP Publishing, 2018, 022010.
[6] S. Goel, M. Toufeeq, A. Saxena, and S. Gupta, Countering bullwhip effect in supply chain management: A literature review, J. Supply Chain Manag. Syst. 9 (2020), no. 1, 14.
[7] S. Gupta and A. Saxena, Operations-based classification of the bullwhip effect, J. Modell. Manag. 17 (2022), no. 1, 134–153.
[8] M.T. Harrison Jr, Exploring the bullwhip effect in supply chain management: Identifying constraints and unblocking bottlenecks with data analytics, Ph.D. Thesis, University of Maryland University College, 2020.
[9] G. Henrique de Paula Vidal, R. Goyannes Gusm˜ao Caiado, L. Felipe Scavarda, P. Ivson, and J. Arturo Garza-Reyes, Decision support framework for inventory management combining fuzzy multicriteria methods, genetic algorithm, and artificial neural network, Comput. Ind. Engin. 174 (2022), 108777.
[10] J. Li, T. Cui, K. Yang, R. Yuan, L. He, and M. Li, Demand forecasting of e-commerce enterprises based on horizontal federated learning from the perspective of sustainable development, Sustainability 13 (2021), no. 23, 13050.
[11] H. Lin, J. Lin, and F. Wang, An innovative machine learning model for supply chain management, J. Inn. Knowledge 7 (2022), no. 4, 100276.
[12] I. Meidute-Kavaliauskiene, K. Taskın, S. Ghorbani, R. Cincikait˙e, and R. Kacenauskaite, Reviewing the applications of neural networks in supply chain: Exploring research propositions for future directions, Information 13 (2022), no. 5, 261.
[13] M. Rezaeefard, N. Pilevari, F. Faezy Razi, and R. Radfar, Reducing the bullwhip effect in supply chain with factors affecting the customer demand forecasting, Int. J. Serv. Oper. Inf. 12 (2022), no. 2, 144–183.
[14] S. Rezaei, S. Shokouhyar, and M. Zandieh, A neural network approach for retailer risk assessment in the aftermarket industry, Benchmark.: Int. J. 26 (2019), no. 5, 1631–1647.
[15] T. Thuy Hanh Nguyen, A. Bekrar, T.M. Le, and M. Abed, The effect of machine learning demand forecasting on supply chain performance-the case study of coffee in Vietnam, Modell. Comput. Optim. Inf. Syst. Manag. Sci.: Proc. 4th Int. Conf. Modell. Comput. Optim. Inf. Syst. Manag. Sci.-MCO 2021, Springer, 2022, pp. 247–258.
[16] A. Yousefi, A. Rahimzadeh, and A. Moradi, A new hybrid prediction reduces the bullwhip effect of demand in a three-level supply chain, J. Modern Proces. Manufact. Prod. 7 (2018), no. 3, 45–58.
[17] M. Zhang, L. Shi, X. Zhuo, and Y. Liu, A bullwhip effect weakening approach based on vmd-svm algorithm under the background of intelligent manufacturing, Processes 9 (2021), no. 11, 1957.
[18] N. Zougagh, A. Charkaoui, and A. Echchatbi, Prediction models of demand in supply chain, Procedia Comput. Sci. 177 (2020), 462–467.