[1] J. Ahmad, K. Muhammad, S. Bakshi, and S.W. Baik, Object-oriented convolutional features for fine-grained image retrieval in large surveillance datasets, Future Gener. Comput. Syst. 81 (2018), 314–330.
[2] Z. Al-Tairi, R. Wirza, M.I. Saripan, and P. Sulaiman, Skin segmentation using YUV and RGB color spaces, J. Inf. Process. Syst. 10 (2014), 283–299.
[3] J.P.B. Casati, D.R. Moraes, and E.L.L. Rodrigues, SFA: A human skin image database based on FERET and AR facial images, Anais, Rio de Janeiro: Escola de Engenharia de Sao Carlos, Universidade de S˜ao Paulo, 2013. Disponıvel em: http://iris.sel.eesc.usp.br/wvc/Anais WVC2013/Poster/2/3.pdf. Acesso em: 27 maio 2023.
[4] H. Ghayoumi Zadeh, A. Fayazi, O. Rahmani Seryasat, and H. Rabiee, A bidirectional long short-term neural network model to predict air pollutant concentrations: A case study of Tehran, Iran, Trans. Machine Intell. 5 (2022), no. 2, 63–76.
[5] J. Haddadnia, O.R. Seryasat, and H. Rabiee, Thyroid diseases diagnosis using probabilistic neural network and principal component analysis, J. Basic Appl. Sci. Res. 3 (2013), no. 2, 593–598.
[6] J. Hartung, A. Jacquin, J. Pawlyk, J. Rosenberg, H. Okada, and P.E. Crouch, Object-oriented H. 263 compatible video coding platform for conferencing applications, IEEE J. Selected Areas Commun. 16 (1998), no. 1, 42–55.
[7] T.J. Hong, S.V. Bhandary, S. Sobha, H. Yuki, B. Akanksha, U. Raghavendra, A.K. Rao, B. Raju, N.S. Shetty, A. Gertych, and K.C. Chua, Age-related macular degeneration detection using deep convolutional neural network, Future Gener. Comput. Syst. 87 (2018), 127–135.
[8] M.A. Islam, D.T. Anderson, A.J. Pinar, T.C. Havens, G. Scott, and J.M. Keller, Enabling explainable fusion in deep learning with fuzzy integral neural networks, IEEE Trans. Fuzzy Syst. 28 (2019), no. 7, 1291–1300.
[9] M. Khishe and M.R. Mosavi, Chimp optimization algorithm, Expert Syst. Appl. 149 (2020), 113338.
[10] M. Khishe and M.R. Mosavi, Classification of underwater acoustical dataset using neural network trained by chimp optimization algorithm, Appl. Acoustics 157 (2020), 107005.
[11] S. Khosravi and A. Chalechale, Chimp optimization algorithm to optimize a convolutional neural network for recognizing Persian/Arabic handwritten words, Math. Prob. Engin. 2022 (2022).
[12] C.L. Kumari and V.K. Kamboj, An effective solution to single-area dynamic dispatch using improved chimp optimizer, In E3S Web of Conferences, EDP Sci. 184 (2020), 01069.
[13] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521 (2015), no. 7553, 436–444.
[14] H. Luo, A. Eleftheriadis, and J. Kouloheris, Statistical model-based video segmentation and its application to very low bit-rate video coding, Signal Process.: Image Commun. 16 (2000), no. 3, 333–352.
[15] R. Mudassar, S. Muhammad, Y. Mussarat, K.M. Attique, S. Tanzila, and F.S. Lawrence, Appearance-based pedestrians’ gender recognition by employing stacked autoencoders in deep learning, Future Gener. Comput. Syst. 88 (2018), 28–39.
[16] K. Nikolskaia, N. Ezhova, A. Sinkov, and M. Medvedev, Skin detection technique based on HSV color model and SLIC segmentation method, Proc. 4th Ural Workshop on Parallel, Distributed, and Cloud Computing for Young Scientists, Ural-PDC 2018, CEUR Workshop Proc. 2281 (2018), 123–135.
[17] O. Rahmani-Seryasat, J. Haddadnia and H. Ghayoumi-Zadeh, A new method to classify breast cancer tumors and their fractionation, Ciˆencia Natura 37 (2015), no. 4, 51–57.
[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (2014), 1929–1958.
[19] M. Zafar, M.I. Sharif, M.I. Sharif, S. Kadry, S.A.C. Bukhari, and H.T. Rauf, Skin lesion analysis and cancer detection based on machine/deep learning techniques: A comprehensive survey, Life 13 (2023), no. 1, 146.