[1] R. Almeida, A.M.C. Brito da Cruz, N. Martins, M. Teresa, and T. Monteiro, An epidemiological MSEIR model described by the Caputo fractional derivative, Int. J. Dyn. Control 7 (2019), 776–784.
[2] R.M. Anderson and R.M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, 1991.
[3] P. Debnath, H.M. Srivastava, P. Kumam, and B. Hazarika, Fixed Point Theory and Fractional Calculus: Recent Advances and Applications, Springer, Singapore, 2022.
[4] B. Derdei, Study of epidemiological models: Stability, observation and estimation of parameters, University of Lorraine, 2013.
[5] K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever, Nonlinear Dyn. 71 (2013), no. 4, 613—619.
[6] W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics, II—the problem of endemicity, Proc. R. Soc. Lond. A 138 (1932), 55-–83.
[7] W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics, III—further studies of the problem of endemicity, Proc. R. Soc. Lond. A 141 (1933), 94—122.
[8] A.E. Gorbalenya, S.C. Baker, and R.S. Baric, The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2, Nature Microbio. 5 (2020), no. 4, 536–544.
[9] W.O. Kermack and A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A 115 (1927), 700—721.
[10] A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. Math. Biol. 68 (2006), no. 3, 615—626.
[11] Y. Li, Y.Q. Chen, and I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl. 59 (2010), no. 5, 1810–1821.
[12] M.Y. Li, J.R. Graef, L. Wang, and J. Karsai, Global dynamics of a SEIR model with varying total population size, Math. Biosci. 160 (1999), no. 2, 191-–213.
[13] S. Momani and S. Hadid, Lyapunov stability solutions of fractional integrodifferential equations, Int. J. Math. Math. Sci. 47 (2004), 25032507.
[14] F. Ndaırou, I. Area, J.J. Nieto, and D.F.M. Torres, Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan, Chaos Solitons Fractals 135 (2020), 109846.
[15] X. Wang, Z. Wang, H. Shen, Dynamical analysis of a discrete-time SIS epidemic model on complex networks, Appl. Math. Lett. 94 (2019) 292–299.
[16] L. Zhang, J. Li, and G. Chen, Extension of Lyapunov second method by fractional calculus, Pure Appl. Math. 3 (2005), 1008–5513.