Semi-Fredholmness on a weighted geometric realization of 2-simplexes and 3- simplexes

Document Type : Research Paper

Authors

1 Laboratoire de Mathematiques Fondamentales et Appliquees, Departement de Mathematiques et Informatique, Faculte des Sciences Ain Chock, Universite Hassan II de Casablanca, Morocco

2 Laboratoire de Mathematiques Fondamentales et Appliquees, Faculte des Sciences Ain Chock, Universite Hassan II de Casablanca, Morocco

Abstract

In this present article, we introduce the notion of oriented $2$-simplexes and the notion of oriented $3$-simplexes and we use them to create a new framework that we call a weighted geometric realization of $2$-simplexes and $3$-simplexes. Next, we define the weighted geometric realization Gauss-Bonnet operator $L$. After that, we present and study the non-parabolicity at the infinity of  $L$. Finally, we develop general conditions to ensure semi-Fredholmness of $L$ based on its non-parabolicity at infinity.

Keywords

[1] N. Anghel. An abstract index theorem on noncompact Riemannian manifolds, Houston J. Math. 19 (1993), no. 2, 223—237.
[2] A. Baalal and K. Hatim, Weighted spectra on a weighted geometric realization of 2- simplexes and 3-simplexes, Discrete Math. Algorithms Appl. 15 (2023), no. 5, 2250130.
[3] C. Carron, Un theoreme de l’indice relatif, Pacific J. Math. 198 (2001), 81–107.
[4] F.R.K. Chung, Spectral graph theory, Reg. Conf. Ser. Math., Vol. 92, Amer., Math. Soc., Providence, RI, 1997.
[5] Y. Colin de Verdi`ere, Spectre de Graphes, Cours Specialises, vol. 4, Soc. Math. France, 1998.
[6] H. Danijela and J. Jost, Spectra of combinatorial Laplace operators on simplicial complexes, Adv. Math. 244 (2013), 303–336.
[7] A.M. Duval, C.J. Klivans and J.L. Martin, Critical groups of simplicial complexes, Ann. Comb. 17 (2013), no. 1, 53–70.
[8] D.L. Ferrario and R.A. Piccinini, Simplicial Structures in Topology, CMS Books in Mathematics, 2011.
[9] M. Gaffney, Hilbert space methods in the theory of harmonic integrals, Ann. Math. 78 (1955), 426–444.
[10] J. Gilbert and M.A. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge Studies in Advanced Mathematics 26, 1991.
[11] A. Grigoryan, Analysis on Graphs, Lecture Notes. University Bielefeld, 2009.
[12] X. Huang, M. Keller, J. Masamune and R.K. Wojciechowski, A note on self-adjoint extensions of the Laplacian on weighted graphs, J. Funct. Anal. 265 (2013), 1556–1578.
[13] B. Mohar and W. Woess, A survey on spectra of infinite graphs, J. Bull. Lond. Math. Soc. 21, No.3, 209-234, 1989.
[14] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, 1978.
[15] M.A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag Berlin Heidelberg New York, 2001.
Volume 14, Issue 10
October 2023
Pages 19-34
  • Receive Date: 14 March 2022
  • Revise Date: 19 April 2023
  • Accept Date: 28 May 2023