[1] M. Ali, Chaos, predictability and controllability in nonlinear systems, Thesis submitted to the University of Delhi, 2016.
[2] M. Arshad and A. Hassan, A numerical study on the hybrid nanofluid flow between a permeable rotating system, Eur. Phys. J. Plus., 137 (2022), 1126.
[3] M. Arshad, A. Hassan, Q. Haider, F.M. Alharbi, N. Alsubaie, A. Alhushaybari, D.P. Burduhos-Nergis and A.M. Galal, Rotating hybrid nanofluid flow with chemical reaction and thermal radiation between parallel plates, Nanomaterials 12 (2022), 4177.
[4] M. Arshad, A. Hussain, A. Elfasakhany, S. Gouadria, J. Awrejcewicz, W. Pawlowski, M.A. Elkotb and F.M. Alharbi, Magneto-hydrodynamic flow above exponentially stretchable surface with chemical reaction, Symmetry 14 (2022), 1688.
[5] M. Arshad, H. Karamti, J. Awrejcewicz, D. Grzelczyk and A.M. Galal, Thermal transmission comparison of nanofluids over stretching surface under the influence of magnetic field, Micromachines 13 (2022), 1296.
[6] J. Awerjeewicz and M.M. Holicke, Melnikov’s method and stick-slip chaotic oscillations in very weakly forced mechanical systems, Int. J. Bifurc. Chaos 9 (1999), 505–518.
[7] Bharti, Concept of transient chaos and energy variability double-well Duffing oscillator, Excell. Int. J. Educ. Res. 2 (2012), no. 4, 474–482.
[8] Bharti, L.M. Saha and M. Yuasa, Energy Variability in Ueda oscillator, Ann. Rep. Res. Inst. Sci. Technol. 23 (2011), 1–10.
[9] B. Bhuvaneshwari, K. Amutha, V. Chinnathambi and S. Rajasekar, Enhanced vibrational resonance by an amplitude modulated signal in a nonlinear dissipative two-fluid plasma model, Contrib. Plasma Phys. 62 (2022), no. 3 e202100099.
[10] B. Bikdesh, B. Balachandran and A. Nayfeh, Melnikov methods for a ship with general rool-damping model, Nonlinear Dyn. 6 (1994), 101–124.
[11] M. Borowice, G. Litak and A. Syta, Vibration of the Duffing oscillator; effect of fractional damping, Shock Vib. 14 (2007), 29–36.
[12] H.G. Enjieu Kadji, J.B. Chabi-Orou and P. Woafo, Regular and chaotic behaviours of plasma oscillations modelled by a modified Duffing equations, Phys. Scripta 77 (2008), 025503.
[13] H.G. Enjieu-kadji and B.R. Nana-Nbendjo, Passive aerodynamics control of plasma instabilities, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1779–1794.
[14] I.R. Epstein and J.A. Pojman, Introduction to Nonlinear Chemical Dynamics, Oscillations, Waves, Patterns and Chaos, Oxford University Press, New York, 1988.
[15] H.G. Enjieu Kadji, B.R. Nana Nbendjo, J.B. Chabi orou and P.K. Talla, Nonlinear dynamics of plasma oscillations modulated by an anharmonic oscillator, Phys. Plasmas 15 (2008), 032308.
[16] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
[17] K. Jayaprakash, P. Alex, S. Arumugam, M. Peruma Thangjam R. Singh and S. Kumar Sinha, Doubly forced anharmonic oscillator model for floating potential fluctuations in DC glow discharge plasma, Physics Lett. A 410 (2021), 127521.
[18] B.E. Keen and W.H. Fletcher, Nonlinear plasma instability effects for subharmonic and harmonic forcing oscillations, J. Phys. A: Gen. Phys. 5 (1972), no. 1, 152.
[19] M. Lakshmanan and S. Rajasekar, Nonlinear Dynamics: Integrability, Chaos and Patterns, Springer, Berlin, 2003.
[20] R.A. Mahafhey, Anharmonic oscillator description of plasma oscillations, Phys. Fluids 19 (1976), 9.
[21] T. Marc, Cuairan, Jan Gieseler, Nadine Meyer and Romain Quidant, Precision calibration of the Duffing oscillatorwith phase control, Phys. Rev. Lett. 128 (2022), 213601.
[22] K. Ostrikov, Colloquium: Reactive plasmas as a versatile nanofabrication tool, Rev. Mod. Phys. 77 (2005), 489.
[23] K. Ostrikov and S. Xu, Plasma-Aided Nanofabrication: From Plasma Sources to Nanoassembly, John Wiley & Sons, Weinheim, 2007.
[24] L.M. Saha, Bharti and M. Yuasa, Energy variability in chaotic dynamical systems, Sci. Technol. 22 (2010), 1–8.
[25] M.A.F. Sanjuan, The effect of nonlinear damping on the universal escape oscillator, Int. J. Bifurc. Chaos 9 (1999), 735–744.
[26] J.E. Skinner, M. Molnar, T. Vybiral and M. Mitra, Application of chaos theory to biology and medicine, Integr. Physiol. Behav. Sci. 27 (1992), no. 1, 39–53.
[27] R.D. Smith, Social structures and chaos theory, Sociol. Res. online 3 (1988), no. 1.
[28] S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Cambridge: Westview Press, 1994.
[29] J.L. Trueba, J. Rams and M.A.F. Sanjuan, Analytical estimates of the effect of nonlinear damping in some nonlinear oscillators, Int. J. Bifurc. Chaos 10 (2000), 9.
[30] S. Vlad, P. Pascu and N. Morariu, Chaos models in economics, J. Comput. 2 (2010), no. 1.