[1] F. Akbari, M. Ghaznavi, and E. Khorram, A revised Pascoletti–Serafini scalarization method for multiobjective optimization problems, J. Optim. Theory Appl. 178 (2018), no. 2, 560–590.
[2] H.P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones, J. Math. Anal. Appl. 71 (1979), 232–241.
[3] J.M. Borwein, Proper efficient points for maximization with respect to cones, SIAM J. Control Optim. 15 (1977), 57–63.
[4] E.U. Choo and D.R. Atkins, Proper efficiency in nonconvex multicriteria programming, Math. Oper. Res. 8 (1983), 467–470.
[5] S. Dempe, Foundations of Bilevel Programming, Springer, Berlin, 2002. [6] M. Ehrgott, Multicriteria Optimization, Springer, Berlin, 2005.
[7] P. Eskelinen and K. Miettinen, Trade-off analysis approach for interactive nonlinear multiobjective optimization, OR Spectrum 34 (2012), 803–816.
[8] A.M. Geoffrion, Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl. 22 (1968), 618–630. [9] M. Henig, Proper efficiency with respect to cones, J. Optim. Theory Appl. 36 (1982), no. 3, 387–407.
[10] N. Hoseinpoor and M. Ghaznavi, The modified objective-constraint scalarization approach for multiobjective optimization problems, Hacet. J. Math. Stat. 51 (2022), no. 5, 1403–1418.
[11] B. Hozzar, G.H. Tohidi, and B. Daneshian, Two methods for determining properly efficient solutions with a minimum upper bound for trade-offs, Filomat 33 (2019), no. 6, 1551–1559.
[12] V. Jog, I. Kaliszewski and W. Michalowski, Using trade-off information in attributes’ investing, IIASA Interm Report, No. IR-98–19, 1998.
[13] M. Karimi and B. Karimi, Linear and conic scalarizations for obtaining properly efficient solutions in multiobjective optimization, Math. Sci. 11 (2017), 319–325.
[14] K. Khaledian, E. Khorram, and M. Soleimani-damaneh, Strongly proper efficient solutions: efficient solutions with bounded trade-offs, J. Optim. Theory Appl. 168 (2016), 864–883.
[15] K. Khaledian and M. Soleimani-damaneh, On efficient solutions with trade-offs bounded by given values, Numer. Funct. Anal. Optim. 36 (2015), no. 11, 1431–1447.
[16] H. Kuhn and A. Tucker, Nonlinear programming, Proc. Second Berkeley Symp. Math. Statist. Probab. J. Neyman, 1951, pp. 481–492.
[17] K. Miettinen, Nonlinear Multiobjective Optimization, International Series in Operations Research and Management Science, Vol. 12. Kluwer Academic Publishers, Dordrecht, 1999.
[18] L. Pourkarimi and M. Karimi, Characterization of substantially and quasi-substantially efficient solutions in multiobjective optimization problems, Turk. J. Math. 41 (2017), 293–304.
[19] P.K. Shukla, J. Dutta, K. Deb, and P. Kesarwani, On a practical notion of Geoffrion proper optimality in multicriteria optimization, Optimization 69 (2020), no. 7-8, 1513–1539.
[20] M. Soleimani-damaneh and M. Zamani, On compromise solutions in multiple objective programming, RAIROOper. Res. 52 (2018), 383–390.
[21] R.E. Steuer, Multiple criteria optimization: theory, computation, and application, Wiley, New York, 1986.
[22] G.G. Tejani, N. Pholdee, S. Bureerat, D. Prayogo, and A.H. Gandomi, Structural optimization using multiobjective modified adaptive symbiotic organisms search, Expert Syst. Appl. 125 (2019), 425–441.
[23] P. Wang, J. Huang, Z. Cui, L. Xie, and J. Chen, A Gaussian error correction multiobjective positioning model with NSGA-II, Concurr. Comput. Pract. Exp. 32 (2020), no. 5.
[24] S.C. Wang and T.C. Chen, Multi-objective competitive location problem with distance-based attractiveness and its best non-dominated solution, Appl. Math. Model. 47 (2017), 785-795.
[25] SC. Wang, H.C.W. Hsiao, C.C. Lin and H.H. Chin, Multi-objective wireless sensor network deployment problem with cooperative distance-based sensing coverage, Mobile Netw. Appl. 27 (2022), 3–14.
[26] Y.M. Xia, X.M. Yang, and K.Q. Zhao, A combined scalarization method for multi-objective optimization problems, J. Ind. Manag. Optim. 17 (2021), no. 5, 2669–2683.
[27] M. Zamani and M. Soleimani-Damaneh, Proper efficiency, scalarization and transformation in multi-objective optimization: Unified approaches, Optimization 71 (2022), no. 3, 753–774.