[1] S. Abbasbandy, The effects of MHD flow of third grade fluid by means of meshless local radial point interpolation (MLRPI), Int. J. Ind. Math. 7 (2015), no. 1, 1—11.
[2] A. Asaithambi, Numerical solution of the Burgers’ equation by automatic differentiation, Appl. Math. Comput. 216 (2010), 2700-–2708.
[3] M. Aslefallah and E. Shivanian, Nonlinear fractional integrodifferential reaction–diffusion equation via radial basis functions, Eur. Phys. J. Plus 130 (2015), no. 47, 1-–9.
[4] H. Bateman, Some recent researches on the motion of fluids, Mon. Weather Rev. 43 (1915), 163-–170.
[5] A. Babu, B. Han, and N. Asharaf, Numerical solution of the viscous Burgers’ equation using Localized Differential Quadrature method, Partial Differ. Equ. Appl. Math. 4 (2021), 100044.
[6] J.M. Burgers, Mathematical Examples Illustrating Relations Occurring in the Theory of Turbulent Fluid Motion, North-Holland Pub. Co., 1939.
[7] J.M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech. 1 (1948), 171-–199
[8] E. Babolian and J. Saeidian, Analytic approximate solutions to Burgers, Fisher, Huxley equations and two combined forms of these equations, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 1984–1992.
[9] G. Beylkin, J. M. Keiser, and L. Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys. 147 (1998), 362–374.
[10] G. Beylkin, J. M. Keiser, and L. Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys. 147 (1998), 362—381.
[11] A. Bratsos, An improved numerical scheme for the sine-Gordon equation in 2+1 dimensions, Int. J. Numer. Meth. Eng. 75 (2008), 787—799
[12] S.M. Cox and P.C. Matthews, Exponential Time Differencing for Stiff Systems, J. Comput. Phys. 176 (2002), 430—455.
[13] V. Chandraker, A. Awasthi, and S. Jayaraj, Numerical Treatment of Burger-Fisher equation, Proc. Technol. 25 (2016), 1217-–1225
[14] M. Dehghan, A. Hamidi, and M. Shakourifar, The solution of coupled Burgers equations using Adomian–Pade technique, Appl. Math. Comput. 189 (2007), 1034—1047.
[15] A. Dogan, A Galerkin finite element approach to Burgers’ equation, Appl. Math. Comput. 157 (2004), 331-–346.
[16] M. Dehghan and A. Ghesmati, Combination of meshless local weak and strong (mlws) forms to solve the two dimensional hyperbolic telegraph equation, Eng. Anal. Bound. Elem. 34 (2010), no. 4, 324—336.
[17] S. De and K. Bathe, The method of finite spheres, Comput. Mech. 25 (2000), 329—345.
[18] F. Fakhar-Izadi and M. Dehghan, Space-time spectral method for a weakly singular parabolic partial integrodifferential equation on irregular domains, Comput. Math. Appl. 67 (2014), no. 10, 1884—1904
[19] H. Fatahi, J. Saberi-Nadjafi, E. Shivanian, A new spectral meshless radial point interpolation (SMRPI) method for the twodimensional Fredholm integral equations on general domains with error analysis, J. Comput. Appl. Math. 294 (2016), 196—209
[20] L.N.G. Filon, On a quadrature formula for trigonometric integrals, Proc. Roy. Soc. Edin. Sect. A 49 (1928–1929), 38-–47.
[21] A. Golbabai and M. Javidi, A spectral domain decomposition approach for the generalized Burgers-Fisher equation, Chaos Solitons Fract. 39 (2009), 385–392.
[22] Y. Gu and G. Liu, A boundary point interpolation method for stress analysis of solids, Comput. Mech. 28 (2002), 47-–54.
[23] Y. Gu and G. Liu, A boundary radial point interpolation method (BRPIM) for 2-d structural analyses, Struct. Eng. Mech. 15 (2003), 535—550.
[24] M. Hajiketabi, S. Abbasbandy, and F. Casas, The Lie-group method based on radial basis functions for solving nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation in arbitrary domains, Appl. Math. Comput. 321 (2018), 223—243
[25] W. Huang and R.D. Russell, Adaptive Moving Mesh Methods, Springer, New York, 2011.
[26] H.N.A. Ismail and A.A.A. Rabboh, A restrictive Pade approximation for the solution of the generalized Fisher and Burger-Fisher equation, Appl. Math. Comput. 154 (2004), 203–210.
[27] A. Iserles, On the numerical quadrature of highly oscillating integrals I: Fourier transforms, IMA J. Numer. Anal. 24 (2004), 365-–391.
[28] R. Jiwari, A Haar wavelet quasilinearization approach for numerical simulation of Burgers’ equation, Comput. Phys. Commun. 183 (2012), 2413-–2423
[29] M.K. Kadalbajoo, K.K. Sharma, and A. Awasthi, A parameter-uniform implicit difference scheme for solving time dependent Burgers’ equation, Appl. Math. Comput. 170 (2005), 1365—1393.
[30] D. Kaya and S.M.El. Sayed, A numerical simulation and explicit solutions of the generalized Burger-Fisher equation, Appl. Math. Comput. 152 (2004), 403–413.
[31] A.K. Khalifa, Khalida Inayat Noor, and Muhammad Aslam Noor, Some numerical methods for solving Burgers equation, Int. J. Phys. Sci. 6 (2011), no. 7, 1702—1710.
[32] A. Korkmaz, Shock wave simulations using sinc differential quadrature method, Eng. Comput. 28 (2011), no. 6, 654-–674.
[33] A. Korkmaz and Idris Dag, Polynomial based differential quadrature method for numerical solution of nonlinear Burgers’ equation, J. Franklin Inst. 348 (2011), no. 10, 2863-–2875.
[34] A. Korkmaz, A. Murat Aksoy, and I. Dag, Quartic B-spline differential quadrature method, Int. J. Nonlinear Sci. 11 (2011), no. 4, 403-–411.
[35] A. Kassam and L.N. Trefethen, Fourth-order time-stepping for stiff PDEs, Siam J. Sci. Comput, Soc. Ind. Appl. Math. 26 (2005), no. 4, 1214-–1233.
[36] W. Liao, An implicit fourth-order compact finite difference scheme for onedimensional Burgers’ equation, Appl. Math. Comput. 206 (2008), 755—764.
[37] R.J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2004.
[38] X.L. Li, Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces, Appl. Numer. Math. 99 (2016), 77-–97.
[39] X.L. Li and Sh. Li,On the stability of the moving least squares approximation and the element-free Galerkin method, Comput. Math. Appl. 72 (2016), 1515–1531.
[40] Z. Lei, G. Tianqi, Z. Ji, J. Shijun, S. Qingzhou, and H. Ming, An adaptive moving total least squares method for curve fitting, Measurement 49 (2014), 107—112.
[41] G. Liu and Y. Gu, An Introduction to Meshfree Methods and Their Programming, Springer, Berlin, 2005.
[42] W. Liu, S. Jun, and Y. Zhang, Reproducing kernel particle methods, Int. J. Numer. Meth. Eng. 20 (1995), 1081-–1106.
[43] D.R. Mott, E.S. Oran, and B. van Leer, A quasi-steady state solver for the stiff ordinary differential equations of reaction kinetics, J. Comput. Phys. 164 (2000), 407-–428.
[44] R.C. Mittal and R.K. Jain, Numerical solutions of nonlinear Burgers’ equation with modified cubic B-splines collocation method, Appl. Math. Comput. 218 (2012), 7839—7855
[45] Y. Mukherjee and S. Mukherjee, Boundary node method for potential problems, Int. J. Numer. Meth. Eng. 40 (1997), 797-–815.
[46] J. Melenk and I. Babuska, The partition of unity finite element method: basic theory and applications, Comput. Meth. Appl. Meth. Eng. 139 (1996), 289—314.
[47] B. Nayroles, G. Touzot, and P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech. 10 (1992), 307—318.
[48] H. Nojavan, S. Abbasbandy, and M. Mohammadi, Local variably scaled Newton basis function collocation method for solving Burgers’ equation, Appl. Math. Comput. 330 (2018), 23—41
[49] M.M. Rashidi, G. Domairry, and S. Dinarvand, Approximate solutions for the Burgers’ and regularized long wave equations by means of the homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 708—717.
[50] M.M. Rashidi and E. Erfani, New analytic method for solving Burgers’ and nonlinear heat transfer equations and comparison with HAM, Comput. Phys. Comm. 180 (2009) 1539–1544.
[51] K. Rahman, N. Helil, and R. Yimin, Some new semiimplicit finite difference schemes for numerical solution of Burgers equation, Int. Conf. Comput. Appl. Syst. Model., IEEE, 2010, V14—451.
[52] A.R. Soheili, A. Kerayechian, and N. Davoodi, Adaptive numerical method for Burgers-type nonlinear equations, Appl. Math. Comput. 219 (2012), 3486—3495
[53] C. Schuster, A. Christ, and W. Fichtner, Review of FDTD time-stepping for efficient simulation of electric conductive media, Microwave Optic. Technol. Lett. 25 (2000), 16–21.
[54] E. Shivanian, Analysis of meshless local and spectral meshless radial point interpolation (MLRPI and SMRPI) on 3-D nonlinear wave equations, Ocean. Eng. 89 (2014), 173—188.
[55] E. Shivanian, A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms, Eng. Anal. Bound. Elem. 54 (2015), 1—12.
[56] E. Shivanian, On the convergence analysis, stability, and implementation of meshless local radial point interpolation
on a class of three-dimensional wave equations, Int. J. Numer. Meth. Eng. May. 105 (2015), no. 2,
83–110.
[57] E. Shivanian, A. Rahimi, and M. Hosseini, Meshless local radial point interpolation to three-dimensional wave equation with Neumann’s boundary conditions, Int. J. Comput. Math. 93 (2016), 2124–2140.
[58] E. Shivanian and H.R. Khodabandehlo, Application of meshless local radial point interpolation (MLRPI) on a one-dimensional inverse heat conduction problem, Ain. Shams. Eng. J. 7 (2016), no. 3, 993–1000
[59] E. Shivanian and H.R. Khodabandelo, A meshless method based on radial basis and spline interpolation for 2-D and 3-D inhomogeneous biharmonic BVPs, Z. Naturf. A 70 (2015), no. 8, 673-–682
[60] E. Shivanian, Local integration of population dynamics via moving least squares approximation, Engin. Comput. 32 (2016), no. 2, 331—342.
[61] E. Shivanian, Local Petrov–Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation, Eng. Anal. Bound. Element. 50 (2015), 249—257
[62] A.H.A.E. Tabatabaei, E. Shakour, M. Dehghan, Some implicit methods for the numerical solution of Burgers equation, Appl. Math. Comput. 191 (2007), 560—570.
[63] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, 1995.
[64] A.M. Wazwaz and A. Gorguis, An analytic study of Fisher's equation by using Adomian decomposition method, Appl. Math. Comput. 154 (2004), 609–620.
[65] A.M. Wazwaz, The Tanh method for generalized forms of nonlinear heat conduction and Burgers-Fisher equations, Appl. Math. Comput. 169 (2005), 321–338.
[66] M. Xu, R. Wang, J. Zhang, and Q. Fang, A novel numerical scheme for solving Burgers’ equation, Appl. Math. Comput. 217 (2011), 4473-–4482.
[67] J. Zhao, H. Li, Z. Fang, and X. Bai, Numerical Solution of Burgers’ Equation Based on Mixed Finite Volume Element Methods, Discrete Dyn. Nature Soc. 2020 (2020), Article ID 6321209, 13 pages.