A note on different conditions of the unique solvability for the absolute value equation

Document Type : Review articles

Authors

1 Delhi Skill and Entrepreneurship University, Sector-9, Dwarka, New Delhi, India

2 Department of Applied Science, IIMT Engineering College Meerut, Uttar Pradesh, India

3 Mathematics Discipline, PDPM- Indian Institute of Information Technology, Design and Manufacturing, Jabalpur-482005, Madhya Pradesh, India

Abstract

In this study, we compare the different conditions which are used to detect the unique solvability of the absolute value equation (AVE) $Ax- B \vert x \vert =b$. Also, analyzing which condition is more suitable to use according to our problem and later, we will see the advantage and disadvantages of different unique solvability conditions. Further, we take an example where existing conditions are invalid to judge the unique solvability of the AVE.

Keywords

[1] M. Achache and N. Hazzam, Solving absolute value equations via complementarity and interior-point methods, J. Nonlinear Funct. Anal. 39 (2018), 1–10.
[2] M. Achache and N. Anane, On unique solvability and Picard’s iterative method for absolute value equations, Bull. Transilv. Univ. Bras. III: Math. Compu. Scie. 63 (2021), no. 1, 13–26.
[3] R. Ali and K. Pan, The new iteration methods for solving absolute value equations, Appl. Math. 68 (2023), no. 1, 109–122.
[4] R. Ali, I. Khan, A. Ali, and A. Mohamed, Two new generalized iteration methods for solving absolute value equations using M-matrix, AIMS Math. 7 (2022), no. 5, 8176–8187.
[5] R. Ali, K. Pan, and A. Ali, Two new iteration methods with optimal parameters for solving absolute value equations, Int. J. Appl. Comput. Math. 8 (2022), no. 3, 1-11.
[6] N. Anane and M. Achache, Preconditioned conjugate gradient methods for absolute value equations, J. Numer. Anal. Approx. Theory 49 (2020), no. 1, 3–14.
[7] M. Dehghan and A. Shirilord, Matrix multisplitting Picard-iterative method for solving generalized absolute value matrix equation, Appl. Numer. Math. 158 (2020), 425–438.
[8] V. Edalatpour, D. Hezari, and D.K. Salkuyeh, A generalization of the Gauss–Seidel iteration method for solving absolute value equations, Appl. Math. Comput. 293 (2017), 156–167.
[9] A.F. Jahromi and N.N. Shamsa, An optimized AOR iterative method for solving absolute value equations, Filomat 35 (2021), no. 2, 459–476.
[10] Y.F. Ke and C.F. Ma, SOR-like iteration method for solving absolute value equations, Appl. Math. Comput. 311 (2017), 195–202.
[11] A. Khan, J. Iqbal, A. Akgul, R. Ali, Y. Du, A. Hussain, K.S. Nisar, and V. Vijayakumar, A Newton-type technique for solving absolute value equations, Alex. Eng. J. 64 (2022), 291–296.
[12] S. Kumar and Deepmala, A note on the unique solvability condition for generalized absolute value matrix equation, J. Numer. Anal. Approx. Theory 51 (2022), no. 1, 83–87.
[13] S. Kumar and Deepmala, On unique solvability of the piecewise linear equation systems, J. Numer. Anal. Approx. Theory 51 (2022), no. 2, 181–188.
[14] S. Kumar and Deepmala, A note on unique solvability of the generalized absolute value matrix equation, Natl. Acad. Sci. Lett. 46 (2023), 129—131.
[15] S. Kumar and Deepmala, The unique solvability conditions for a new class of absolute value equation, Yugosl. J. Oper. Res. (2022).
[16] S.L. Hu and Z.H. Huang, A note on absolute value equations, Optim. Lett. 4 (2010), no. 3, 417–424.
[17] T. Lotfi and H. Veiseh, A note on unique solvability of the absolute value equation, J. Linear Topol. Algeb. 2 (2013), 77-81.
[18] O.L. Mangasarian and R.R. Meyer, Absolute value equations, Linear Algebra Appl. 419 (2006), 359—367.
[19] O.L. Mangasarian, Absolute value programming, Comput. Optim. Appl. 36 (2007), no. 1, 43—53.
[20] O.L. Mangasarian, Absolute value equation solution via concave minimization, Optim. Lett. 1 (2007), 3—8.
[21] O.L. Mangasarian, A generalized Newton method for absolute value equations, Optim. Lett. 3 (2009), 101—108.
[22] O.L. Mangasarian, Absolute value equation solution via dual complementarity, Optim. Lett. 7 (2013), 625—630.
[23] O.L. Mangasarian, Absolute value equation solution via linear programming, J. Optim. Theory Appl. 161 (2014), 870—876.
[24] O.L. Mangasarian, A hybrid algorithm for solving the absolute value equation, Optim. Lett. 9 (2015), 1469—1474.
[25] F. Mezzadri, On the solution of general absolute Value Equations, Appl. Math. Lett. 107 (2020), 106462.
[26] O.A. Prokopyev, On equivalent reformulations for absolute value equations, Comput. Optim. Appl. 44 (2009), no. 3, 363—372.
[27] J. Rohn, A theorem of the alternatives for the equation Ax + B|x| = b, Linear Multilinear Algebra 52 (2004), no. 6, 421–426.
[28] J. Rohn, On unique solvability of the absolute value equation, Optim. Lett. 3 (2009), 603–606.
[29] J. Rohn, V. Hooshyarbakhsh, and R. Farhadsefat, An iterative method for solving absolute value equations and sufficient conditions for unique solvability, Optim. Lett. 8 (2014), 35—44.
[30] S.L. Wu and C.X. Li, The unique solution of the absolute value equations, Appl. Math. Lett. 76 (2018), 195–200.
[31] S.L. Wu and C.X. Li, A note on unique solvability of the absolute value equation, Optim. Lett. 14 (2019), 1957-1960.
[32] S.L. Wu and S. Shen, On the unique solution of the generalized absolute value equation, Optim. Lett. 15 (2021), 2017—2024.
Volume 15, Issue 3
March 2024
Pages 371-375
  • Receive Date: 17 January 2023
  • Revise Date: 18 February 2023
  • Accept Date: 21 June 2023