[1] M. Achache and N. Hazzam, Solving absolute value equations via complementarity and interior-point methods, J. Nonlinear Funct. Anal. 39 (2018), 1–10.
[2] M. Achache and N. Anane, On unique solvability and Picard’s iterative method for absolute value equations, Bull. Transilv. Univ. Bras. III: Math. Compu. Scie. 63 (2021), no. 1, 13–26.
[3] R. Ali and K. Pan, The new iteration methods for solving absolute value equations, Appl. Math. 68 (2023), no. 1, 109–122.
[4] R. Ali, I. Khan, A. Ali, and A. Mohamed, Two new generalized iteration methods for solving absolute value equations using M-matrix, AIMS Math. 7 (2022), no. 5, 8176–8187.
[5] R. Ali, K. Pan, and A. Ali, Two new iteration methods with optimal parameters for solving absolute value equations, Int. J. Appl. Comput. Math. 8 (2022), no. 3, 1-11.
[6] N. Anane and M. Achache, Preconditioned conjugate gradient methods for absolute value equations, J. Numer. Anal. Approx. Theory 49 (2020), no. 1, 3–14.
[7] M. Dehghan and A. Shirilord, Matrix multisplitting Picard-iterative method for solving generalized absolute value matrix equation, Appl. Numer. Math. 158 (2020), 425–438.
[8] V. Edalatpour, D. Hezari, and D.K. Salkuyeh, A generalization of the Gauss–Seidel iteration method for solving absolute value equations, Appl. Math. Comput. 293 (2017), 156–167.
[9] A.F. Jahromi and N.N. Shamsa, An optimized AOR iterative method for solving absolute value equations, Filomat 35 (2021), no. 2, 459–476.
[10] Y.F. Ke and C.F. Ma, SOR-like iteration method for solving absolute value equations, Appl. Math. Comput. 311 (2017), 195–202.
[11] A. Khan, J. Iqbal, A. Akgul, R. Ali, Y. Du, A. Hussain, K.S. Nisar, and V. Vijayakumar, A Newton-type technique for solving absolute value equations, Alex. Eng. J. 64 (2022), 291–296.
[12] S. Kumar and Deepmala, A note on the unique solvability condition for generalized absolute value matrix equation, J. Numer. Anal. Approx. Theory 51 (2022), no. 1, 83–87.
[13] S. Kumar and Deepmala, On unique solvability of the piecewise linear equation systems, J. Numer. Anal. Approx. Theory 51 (2022), no. 2, 181–188.
[14] S. Kumar and Deepmala, A note on unique solvability of the generalized absolute value matrix equation, Natl. Acad. Sci. Lett. 46 (2023), 129—131.
[15] S. Kumar and Deepmala, The unique solvability conditions for a new class of absolute value equation, Yugosl. J. Oper. Res. (2022).
[16] S.L. Hu and Z.H. Huang, A note on absolute value equations, Optim. Lett. 4 (2010), no. 3, 417–424.
[17] T. Lotfi and H. Veiseh, A note on unique solvability of the absolute value equation, J. Linear Topol. Algeb. 2 (2013), 77-81.
[18] O.L. Mangasarian and R.R. Meyer, Absolute value equations, Linear Algebra Appl. 419 (2006), 359—367.
[19] O.L. Mangasarian, Absolute value programming, Comput. Optim. Appl. 36 (2007), no. 1, 43—53.
[20] O.L. Mangasarian, Absolute value equation solution via concave minimization, Optim. Lett. 1 (2007), 3—8.
[21] O.L. Mangasarian, A generalized Newton method for absolute value equations, Optim. Lett. 3 (2009), 101—108.
[22] O.L. Mangasarian, Absolute value equation solution via dual complementarity, Optim. Lett. 7 (2013), 625—630.
[23] O.L. Mangasarian, Absolute value equation solution via linear programming, J. Optim. Theory Appl. 161 (2014), 870—876.
[24] O.L. Mangasarian, A hybrid algorithm for solving the absolute value equation, Optim. Lett. 9 (2015), 1469—1474.
[25] F. Mezzadri, On the solution of general absolute Value Equations, Appl. Math. Lett. 107 (2020), 106462.
[26] O.A. Prokopyev, On equivalent reformulations for absolute value equations, Comput. Optim. Appl. 44 (2009), no. 3, 363—372.
[27] J. Rohn, A theorem of the alternatives for the equation Ax + B|x| = b, Linear Multilinear Algebra 52 (2004), no. 6, 421–426.
[28] J. Rohn, On unique solvability of the absolute value equation, Optim. Lett. 3 (2009), 603–606.
[29] J. Rohn, V. Hooshyarbakhsh, and R. Farhadsefat, An iterative method for solving absolute value equations and sufficient conditions for unique solvability, Optim. Lett. 8 (2014), 35—44.
[30] S.L. Wu and C.X. Li, The unique solution of the absolute value equations, Appl. Math. Lett. 76 (2018), 195–200.
[31] S.L. Wu and C.X. Li, A note on unique solvability of the absolute value equation, Optim. Lett. 14 (2019), 1957-1960.
[32] S.L. Wu and S. Shen, On the unique solution of the generalized absolute value equation, Optim. Lett. 15 (2021), 2017—2024.