[1] P.L. Duren, Univalent Functions, Grundlehren der mathematischen Wissenschaften 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[2] I. Hotta and M. Nunokawa, On strongly starlike and convex functions of order α and type β, Mathematica 53 (2011), no. 76, 51–56.
[3] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), no. 2, 169–185.
[4] R. Kargar, A. Ebadian, and J. Sok´o l, On Booth lemniscate and starlike functions, Anal. Math. Phys. 9 (2019), no. 1, 143–154.
[5] R. Kargar, A. Ebadian, and L. Trojnar-Spelina, Further results for starlike functions related with Booth lemniscate, Iran. J. Sci. Technol. Trans. A: Sci. 43 (2019), no. 3, 1235–1238.
[6] S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, Marcel Dekker Inc., New York, 2000.
[7] M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Seri. A, Math. Sci. 69 (1993), no. 7, 234–237.
[8] M. Nunokawa, S.P. Goyal, and R. Kumar, Sufficient conditions for starlikeness, J. Class. Anal. 1 (2012), no. 1, 85–90.
[9] Z. Orouji and R. Aghalary, The norm estimates of Pre- Schwarzian derivatives of spirallike functions and uniformly convex α- spirallike functions, Sahand Commun. Math. Anal. 12 (2018), no. 1, 89–96.
[10] K. Piejko and J. Sokol, Hadamard product of analytic functions and some special regions and curves, J. Ineq. Appl. 2013 (2013), 420.
[11] Y.J. Sim and D.K. Thomas, On the difference of coefficients of starlike and convex functions, Mathematics 8 (2020), no. 9, 1521.