[1] K.E. Atkinson, An existence theorem for Abel integral equations, SIAM j. Math. Anal. 5 (1974), 729–736.
[2] H. Azin, F. Mohammadi, D. Baleanu, A generalized Barycentric rational interpolation method for Abel equations, Int. J. Appl. Comput. Math. 6 (2020), doi: 10.1007/s40819-020-00891-6.
[3] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge Univ. Press, 2004.
[4] H. Brunner, Volterra Integral Equations, Cambridge University Press, New York, (2017).
[5] N. Ebrahimi and J. Rashidinia, Spline collocation for system of Fredholm and Volterra integro-differential equations, J. Math. Model. 3 (2015), no. 2, 219–232.
[6] C. Fleurier and J. Chapelle, Inversion of Abel’s integral equation application to plasma spectroscopy, Comput. Phys. Comm. 7 (1974), 200–206.
[7] J. Goncerzewicz, H. Marcinkowska, W. Okrasinski, and K. Tabisz, On percolation of water from a cylindrical reservoir into the surrounding soil, Appl. Math. 16 (1978), 249–261.
[8] R. Gorenflo and S. Vessella, Lecture Notes in Mathematics, Springer-Verlag Berlin Heidelberg, Germany, 1991.
[9] M. Izadi and M. Afshar, Solving the Basset equation via Chebyshev collocation and LDG methods, J. Math. Model. 9 (2021), no. 1, 61—79.
[10] J.J. Keller, Propagation of simple nonlinear waves in gas filled tubes with friction, Z. Angew. Math. Phys. 32 (1981), 170–181.
[11] K. Kumar, R.K. Pandy, and Sh. Sharma, Numerical schemes for generalized Abel’s integral equations, Int. J. App. Comput. Math. 4 (2018), Article no. 68.
[12] N. Mandal, A. Chakrabarti, and B.N. Mandal, Solution of a system of generalized Abel integral equations using fractional calculus, App. Math. Lett. 9 (1996) 1-4.
[13] W.R. Mann and F. Wolf, Heat transfer between solids and gases under nonlinear boundary conditions, Quart. Appl. Math. 9 (1951), 163–184.
[14] S. Pandey, S. Dixit, and S.R. Verma, An efficient solution of system of generalized Abel integral equations using Bernstein polynomials wavelet bases, Math. Sci. 14 (2020), 279–291.
[15] A.P. Reddy, M. Harageri, and C. Sateesha, A numerical approach to solve eighth order boundary value problems by Haar wavelet collocation method, J. Math. Model. 5 (2017), no. 1, 61–75.
[16] K. Sadri, A. Amini, and C. Cheng, A new operational method to solve Abel’s and generalized Abel’s integral equations, Appl. Math. Comput. 317 (2018), 49–67.
[17] C. Schneider, Regularity of the solution to a class of weakly singular Fredholm integral equations of the second kind, Integral Equ. Oper. Theory 2 (1979), 62–68.
[18] A. Setia and R.K, Pandey, Leguerre polynomials based numerical method to solve a system of generalized Abel integral equations, Procedia Eng. 38 (2012), 1675–1682.
[19] C.S. Singh, H. Singh, S. Singh, and D. Kumar, An efficient computational method for solving system of nonlinear generalized Abel equations arising in astrophysics, Phys. A. 525 (2019), 1440–1448.
[20] A. Tari, The differential transform method for solving the model describing biological species living together, Iran. J. Math. Sci. Inf. 7 (2012), no. 2, 55–66.
[21] J. Tausch, The generalized Euler-Maclaurin formula for the numerical solution of Abel-type integral equations, J. Integral Equ. Appl. 22 (2010), 115–140.
[22] G. Vainikko and A. Pedas The properties of solutions of weakly singular integral equations, J. Aust. Math. Soc. 22 (1981), 419–430.