[1] M. Ehrgott, Multicriteria Optimization, Springer Verlag, Berlin, 2005.
[2] D. Foroutannia and A. Mahmodinejad, The concept of B-efficient solution in fair multi-objective optimization problems, Iran. J. Numer. Anal. Optim. 7 (2017), no. 1, 47–64.
[3] M.M. Kostreva and W. Ogryczak, Linear optimization with multiple equitable criteria, RAIRO Oper. Res. 33 (1999), no. 3, 275–297.
[4] M.M. Kostreva, W. Ogryczak and A. Wierzbicki, Equitable aggregations in multiple criteria analysis, Eur. J. Oper. Res. 158 (2004), no. 2, 362–377.
[5] M.O. Lorenz, Methods of measuring the concentration of wealth, J. Am. Stat. Assoc. 9 (1905), 209–219.
[6] D.T. Luc, Theory of Vector Optimization, Springer Verlag, Berlin, 1989.
[7] A.W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, New York, 1979.
[8] W. Ogryczak, Multiple criteria linear programming model for portfolio selection, Ann. Oper. Res. 97 (2000), 143–162.
[9] W. Ogryczak, Inequality measures and equitable approaches to location problems, Eur. J. Oper. Res. 122 (2000), no. 2, 374–391.
[10] W. Ogryczak, H. Luss, M. Pioro, D. Nace, and A. Tomaszewski, Fair optimization and networks: a survey, J. Appl. Math., 2014 (2014), Article ID 612018.
[11] W. Ogryczak, A. Wierzbicki, and M. Milewski, A multi-criteria approach to fair and efficient bandwidth allocation, Omega, 36 (2008), 451–463.
[12] W. Ogryczak and M. Zawadzki, Conditional median: a parametric solution concept for location problems, Ann. Oper. Res. 110 (2002), 167–181.
[13] L. Pourkarimi and M. Soleimani-damaneh, Existence, Proper Pareto reducibility, and connectedness of the nondominated set in multi-objective optimization, J. Nonlinear Convex Anal. 19 (2018), 1287–1295.
[14] V.K. Singh, Equitable efficiency in Multiple Criteria Optimization, Ph.D. Thesis, Clemson University, 2007.