Construction of a finite Dickson nearfield

Document Type : Research Paper


Department of Mathematics, Nelson Mandela University, South Africa


 For a Dickson pair $(q,n)$ we show that  $ \big \lbrace  \frac{q^k-1}{q-1}, 1 \leq k \leq  n \big  \rbrace $ forms a finite complete set of different residues modulo $n$. We also study the construction of a finite Dickson nearfield that arises from the Dickson pair $(q,n)$.


[1] J.C. Beidleman, On near-rings and near-ring modules. PhD thesis, Pennsylvanian State University, 1966.
[2] L.E. Dickson, On finite algebras, Nachr. Gesellsch. Wissensch. G¨ott. Math.-Phys. Klasse 1905 (1905), 358–393.
[3] P. Djagba, Contributions to the theory of Beidleman near-vector spaces, PhD thesis, Stellenbosch University, 2019.
[4] P. Djagba, On the generalized distributive set of a finite nearfield, J. Algebra 542 (2020), 130–161.
[5] P. Djagba, On the center of a finite Dickson nearfield, arXiv preprint arXiv:2003.08306, 2020.
[6] P. Djagba and K.-T. Howell The subspace structure of finite dimensional near-vector spaces, Linear Multilinear Algebra 68 (2020), no. 11, 2316–2336.
[7] E. Ellers and H. Karzel, Endliche Inzidenzgruppen, Abhandl. Math. Seminar Hamburg 27 (1964), no. 3-4, 250–264.
[8] J.D.P. Meldrum, Near Rings and Their Links with Groups, volume 134 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1985.
[9] G. Pilz, Near-Rings: The Theory and its Applications, Elsevier, 2011.
[10] H. Wahling, Heinz, Theorie der Fastkorper, Thales Verlag, W. Germany, 1987.
[11] H. Zassenhaus, uber endliche fastk¨orper, Abhandl. Math. Seminar Univ. Hamburg 11 (1935), 187–220.
Volume 14, Issue 10
October 2023
Pages 155-161
  • Receive Date: 31 May 2023
  • Accept Date: 12 August 2023