Characterization of n-exact sequence of n-additive categories

Document Type : Review articles

Authors

Department of Mathematics, Payame Noor University (PNU), P. OBox, 19395-4697 Tehran, Iran

Abstract

In this paper, the concepts of n-monomorphism, n-epimorphism, n-isomorphism, n-equivalent, n-coproduct, n-product, n-injection, n-projection, n-initial object, n-terminal object, n-pushout diagram, n-inverse system, n-inverse limit, and n-homology of categories will be introduced and will be shown the relationship between them. Next, some of their properties and structure characteristics will be investigated and obtained some results about them.

Keywords

[1] M. Auslander and S. O. Smalǿ, Almost split sequences in subcategories, J. Algebra, 69 (1981), no. 2, 426-454.
[2] M. P. Brodmann and R. Y. Sharp, Local Cohomology, An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics, vol. 60, Cambridge University Press, Cambridge, 1998.
[3] T. Buhler, Exact categories, Expo. Math, 28 (2010), no. 1, 1–69.
[4] P. Fredy, Abelian categories, An Introduction to the Theory of Functors, Harper’s Series in Modern Mathematics, Harper and Row Publishers, New York, 1994.
[5] L. Frerick and D. Sieg, Exact Categories in Functional Analysis, Available at https://www.math.unitrier.de//abteilung/analysis/HomAlg.pdf.  
[6] S. Hashemi, F. Hassani and R. Rasuli, The new results in injective modules, Earthline J. Math. Sci. 7 (2021), 145–159.
[7] S. Hashemi, F. Hassani and R. Rasuli, The New Results in n-injective Modules and n-projective Modules, Earthline J. Math. Sci. 7 (2021), no. 2, 271–285.
[8] S. Hashemi, F. Hassani and R. Rasuli, The new results in n-abelian category, Eur. J. Math. Appl. 1 (2021).
[9] G. Jasso, n-Abelian and n-exact categories, Math. Z. 283 (2016), 703–759.
[10] A. Neeman, The derived category of an exact category, J. Algebra 135 (1990), no. 2, 388–394.
[11] L. Ribes and P. Zalesskii, Profinite Groups, Springer, Berlin Heidelberg, 2010.
[12] J. J. Rotman, An Introduction to Homological Algebra, New York Springer Verlag, 1992.
[13] C.A. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.
Volume 14, Issue 11
November 2023
Pages 343-364
  • Receive Date: 14 July 2022
  • Revise Date: 10 September 2022
  • Accept Date: 22 September 2022