[1] H.N. Agiza, E.M. Elabbasy, H. El-Metwally, and A.A. Elsadany, Chaotic dynamics of a discrete prey-predator model with Holling type II, Nonlinear Anal.: Real World Appl. 10 (2009), no. 1, 116–129.
[2] R. Ahmed, Complex dynamics of a fractional-order predator-prey interaction with harvesting, Open J. Discrete Appl. Math. 3 (2020), no. 3, 24–32.
[3] R. Ahmed, A. Ahmad, and N. Ali, Stability analysis and Neimark-Sacker bifurcation of a nonstandard finite difference scheme for Lotka-Volterra prey-predator model, Commun. Math. Bio. Neurosci. 2022 (2022), 61.
[4] R. Ahmed and M.S. Yazdani, Complex dynamics of a discrete-time model with prey refuge and holling type-II functional response, J. Math. Comput. Sci. 12 (2022), 113.
[5] S. Akhtar, R. Ahmed, M. Batool, N.A. Shah, and J.D. Chung, Stability, bifurcation and chaos control of a discretized Leslie prey-predator model, Chaos Soliton Fractals 152 (2021), 111345.
[6] C.J.L. Albert, Regularity and Complexity in Dynamical Systems, Springer-Verlag, New York, 2012.
[7] M. Berkal and J.F. Navarro, Qualitative behavior of a two-dimensional discrete-time prey-predator model, Comput. Math. Meth. 3 (2021), no. 6, e1193.
[8] Q. Cui, Q. Zhang, Z. Qiu, and Z. Hu, Complex dynamics of a discrete-time prey-predator system with Holling IV functional response, Chaos Solitons Fractals 87 (2016), 158–171.
[9] Q. Din, Complexity and chaos control in a discrete-time prey-predator model, Commun. Nonlinear Sci. Numer. Simul. 49 (2017), 113–134.
[10] Q. Din and U. Saeed, Bifurcation analysis and chaos control in a host-parasitoid model, Math. Meth. Appl. Sci. 40 (2017), no. 14, 5391–5406.
[11] Q. Din and M.I. Khan, A discrete-time model for consumer-resource interaction with stability, bifurcation and chaos control, Qual. Theory Dyn. Syst. 20 (2021), 56.
[12] Z. Jing and J. Yang, Bifurcation and chaos in discrete-time predator-prey system, Chaos Solitons Fractals 27 (2006), no. 1, 259–277.
[13] A.A. Khabyah, R. Ahmed, M.S. Akram, and S. Akhtar, Stability, bifurcation, and chaos control in a discrete predator-prey model with strong allee effect, AIMS Math. 8 (2023), no. 4, 8060–8081.
[14] S. Kumar and H. Kharbanda, Chaotic behavior of predator-prey model with group defense and non-linear harvesting in prey, Chaos Solitons Fractals 119 (2019), 19–28.
[15] Y. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, Springer-Verlag, New York, 2004.
[16] X. Liu and D.M. Xiao, Complex dynamic behaviors of a discrete-time predator-prey system, Chaos Solitons Fractals 32 (2007), 80–94.
[17] J. Luo and Y. Zhao, Stability and bifurcation analysis in a predator-prey system with constant harvesting and prey group defence, Int. J. Bifurc. Chaos 27 (2017), no. 11, 1750179.
[18] H. Merdan and O. Duman, On the stability analysis of a general discrete-time population model involving predation and Allee effects, Chaos Solitons Fractals 40 (2009), 1169–1175.
[19] M.G. Mortuja, M.K. Chaube, and S. Kumar, Dynamic analysis of a predator-prey system with nonlinear prey harvesting and square root functional response, Chaos Solitons Fractals 148 (2021), 111071.
[20] S. Pal, N. Pal, S. Samanta, and J. Chattopadhyay, Effect of hunting cooperation and fear in a predator-prey model, Ecol. Complexity 39 (2019), 100770.
[21] P. K. Santra, G. S. Mahapatra, G.R. Phaijoo, Bifurcation analysis and chaos control of discrete prey-predator model incorporating novel prey-refuge concept, Comput. Math. Meth. 3 (2021), no. 6, e1185.
[22] S. Sharma and G.P. Samanta, Dynamical behaviour of age selective harvesting of a prey-predator system, Int. J. Dyn. Control 6 (2018), 550–560.
[23] Y. Sun, M. Zhao, and Y. Du, Bifurcations, chaos analysis and control in a discrete predator-prey model with mixed functional responses, Int. J. Biomath. 2023 (2023), 2350028.
[24] Q. Shu and J. Xie, Stability and bifurcation analysis of discrete predator-prey model with nonlinear prey harvesting and prey refuge, Math. Meth. Appl. Sci. 45 (2022), no. 7, 3589–3604.
[25] S. Vinoth, R. Sivasamy, K. Sathiyanathan, B. Unyong, G. Rajchakit, R. Vadivel, and N. Gunasekaran, The dynamics of a Leslie type predator-prey model with fear and Allee effect, Adv. Differ. Equ. 2021 (2021), 338.
[26] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 2003.
[27] L.G. Yuan and Q.G. Yang, Bifurcation, invariant curve and hybrid control in a discrete time predator prey system, Appl. Math. Modell. 39 (2015), no. 8, 2345–2362.
[28] N. Zhang, F. Chen, and Q. Su, Dynamic behaviors of a harvesting Leslie-Gower predator-prey model, Discrete Dyn. Nature Soc. 2011 (2011), 473949.
[29] Z. Zhu, Y. Chen, Z. Li, and F. Chen, Stability and bifurcation in a Leslie-Gower predator-prey model with Allee effect, Int. J. Bifurc. Chaos 32 (2022), no. 3, 2250040.