Transmission problem between two Herschel-Bulkley fluids in a thin layer with different power law index

Document Type : Research Paper

Authors

1 Laboratory of Pure and Applied Mathematics, Amar Telidji University, Laghouat 03000, Algeria

2 Department of Mathematics and LDMM Laboratory Ziane Achour University, Djelfa 17000, Algeria

Abstract

The paper is devoted to the study of the steady-state transmission problem between two Herschel-Bulkley fluids in thin layers with different viscosities, yield limits and power law index.

Keywords

[1] F. Boughanim, M. Boukrouche, and H. Smaoui, Asymptotic behavior of a non-Newtonian flow with stick-slip condition, 2004-Fez Conf. Differ. Equ. Mech. Electron. J. Differ. Edu., Conf. 11, 2004, pp. 71–80.
[2] A. Bourgeat, A. Mikelic, and R. Tapi´ero, D´erivation des equations moyenn´ees d´ecrivant un ecoulement non Newtonien dans un domaine de faible epaisseur, C. R. Acad. Sci. Paris, 316 (1993), no. I, 965–970.
[3] H. Brezis, Equations et in´equations non Lin´eaires dans les espaces en dualit´e, Ann. Inst. Fourier 18 (1996), no. 1, 115–175.
[4] R. Bunoin and S. Kesavan, Fluide de Bingham dans une couche mince, Ann. Univ. Craiova, Math. Comp. Sci. Ser. 30 (2003), 71–77.
[5] R. Bunoin and J. Saint Jean Paulin, Nonlinear viscous flow through a thin slab in the lubrification case, Rev. Roum. Math. Pures Appl. 45 (2000), no. 4, 577–591.
[6] G. Duvaut and J.L. Lions, Les Inequations en Me canique et en physique, Dunod, 1976.
[7] I. Ekeland and R. Temam, Analyse Convexe et Probl`emes Variationnels, Dunod, Paris, 1974.
[8] J.L. Lions, Quelques Methodes de Resolution des Probl`emes Aux Limites Non Lineaires, Dunod, 1996.
[9] K. F. Liu and C. C. Mei, Approximate Equations for the Slow Spreading of a Thin Sheet of Bingham Plastic Fluid, Phys. Fluids A 2 (1990), no. 1, 30–36.
[10] J. M´alek, Mathematical properties of flows of incompressible power-law-like fluids that are described by implicit constitutive relations, Electronic Trans. Numer. Anal. 31 (2008), 110–125.
[11] J. Malek, M. Ruzicka, and V.V. Shelukhin, Herschel-Bulkley fluids, existence and regularity of steady flows, Math. Models Methods Appl. Sci. 15 (2005), no. 12, 1845–1861.
[12] F. Messelmi and B. Merouani, Flow of Herschel-Bulkley fluid through a two-dimensional thin layer, Stud. Univ. Babeļ¼Œs-Bolyai Math. 58 (2013), no. 1, 119–130.
[13] F. Messelmi, Effects of the yield limit on the behaviour of Herschel-Bulkley fluid, Nonlinear Sci. Lett. A 2 (2011), no. 3, 137–142.
[14] F. Messelmi, B. Merouani, and F. Bouzeghaya, Steady-State Thermal Herschel-Bulkley Flow with Tresca’s Friction Law, Electronic J. Differ. Equ. 2010 (2010), no. 46, 1–14.
[15] A. Mikelic and R. Tapi´ero, Mathematical derivation of the power law describing polymer flow through a thin slab, ESAIM: Math. Modell. Numer. Anal. 29 (1995), 3–23.
Volume 15, Issue 8
August 2024
Pages 17-28
  • Receive Date: 03 December 2022
  • Revise Date: 29 August 2023
  • Accept Date: 29 August 2023