Some Gauss type contiguous relations between Faraut-Koranyi hypergeometric functions

Document Type : Research Paper

Authors

Department of Mathematics, Faculty of Sciences, University Hassan II, Casablanca, Morocco

Abstract

 In this paper, we give a complete description of the generalized hypergeometric functions, introduced by Faraut and Kor'{a}nyi on the Cartan domain. We establish some Gauss type contiguous relations between these functions on the two Cartan domains of type I2 and type  IV4 analogous to the classical relations in the one variable case.

Keywords

[1] Y. Chikuse, Invariant polynomials with matrix arguments and their applications, Multivar. Statist. Anal. 1 (1980), 54–68.
[2] Y. Chikuse and A.W. Davis, Some properties of invariant polynomials with matrix arguments and their applications in econometrics, J. Ann. Inst. Statist. Math. Part A 38 (1986), 109–122.
[3] A.G. Constantine, Noncentral distribution problem in multivariante analysis, J. Ann. Math. Statist. 34 (1963), 1270–1285.
[4] A.W. Davis, Invariant polynomials with two matrix arguments, extending the zonal polynomials: Applications to multivariante distribution theory, J. Ann. Instit. Statist. Math. Part A 31 (1979), 465–485.
[5] A.W. Davis, Invariant polynomials with two matrix arguments, extending the zonal polynomials, Krishnaiah P R (ed.) Multivariante Analysis V. (North-Holland Publishing Company), 1980, pp. 287-299.
[6] A. Debiard, Polynomes de Tch´ebichev et de Jacobi dans un espace euclidien de dimension p, C.R. Acad. Sci. Paris 296 (1983), 529–532.
[7] F. El Wassouli and Z. Mouhcine, Zonal spherical function on the Lie ball in Cn, J. Integral Transforms Spec. Funct. 30 (2019), 594–600.
[8] J. Faraut and A. Koranyi, Fonctions gyperg´eom´etriques associ´es aux cˆones sym´etrique, C. R. Acd. Sci. Paris 307 (1988), 555–558.
[9] J.Faraut and A. Koranyi, Functions spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal, 88 (1990), 64–89.
[10] J. Faraut and A. Koranyi, Analysis on Symmetric Cones, Clarendon Press. Oxford, 1994.
[11] S. Gindikin, Analysis on homogeneous domains, Russ. Math. Surv, 19 (1964), 1–89.
[12] C.S. Herz, Bessel functions of matrix argument, J. Ann. Math. 61 (1955), 474-523.
[13] A. Koranyi, Hua-type integrals, hypergeometric functions and symmetric polynomials, Int. Symp. Memory of Hua Loo Keng, Vol.II (Beijing, (1988)). Springer. Berlin, 1991, pp. 169-180.
[14] M. Lassalle and M. Schlosser, An analytic formula for Macdonald polynomials, C. R. Math. Acad. Sci. Paris 337 (2003), 569—574.
[15] O. Loos, Bounded Symmetric Domains and Jordan Pairs, Univ. of California, Irvine, 1977.
[16] L.G. Macdonald, Commuting differential operators and zonal spherical functions, Algebraic Groups Utrecht 1986: Proc. Symp. Honour of TA, Springer Berlin Heidelberg, 2006, pp. 189–200.
[17] R.J. Muirhead, Aspects of Multivariate Statistical Theory, John Wiley, 1982.
[18] Z. Yan, A class of generalized hypergeometric functions in several variables, Canad. J. Math. 44 (1992), 1317–1338.
Volume 15, Issue 8
August 2024
Pages 349-358
  • Receive Date: 25 August 2021
  • Accept Date: 22 October 2021