[1] S. Abbas, A. Deep, B. Singh, M.R. Alharthi, and K.S. Nisar, Solvability of functional stochastic integral equations via Darbo’s fixed point theorem, Alexandria Engin. J. 60 (2021), 5631–5636.
[2] R. Arab, H.K. Nashine, and R.W. Ibrahim, Tripled fixed point results via a measure of noncompactness with applications, Asian-Eur. J. Math. 14 (2021), no. 2, 2150008.
[3] T.D. Benavides and P.L. Ramirez, Measures of noncompactness in modular spaces and fixed point theorems for multivalued nonexpansive mappings, J. Fixed Point Theory Appl. 2021 (2021), 21:40.
[4] J. Banas, M. Jleli, M. Mursaleen, and B. Samet, Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness, Springer, Singapore, 2017.
[5] J. Banas and B.C. Dhage, Global asymptotic stability of solutions of a functional integral equation, Nonlinear Anal. 69 (2008), 1945–1952.
[6] J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Lect. Notes Pure Appl. Math. New York, Vol. 60, 1980.
[7] T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379–1393.
[8] K.C. Border, Fixed Point Theorems with Applications to Economics and Game Theory, Cambridge University Press, 1985.
[9] G. Darbo, Punti uniti in transformazioni a condomino non compatto, Rend. Sem. Mat. Univ. Padova. 24 (1955), 84–92.
[10] B.C. Dhage and S.S. Bellale, Local asymptotic stability for nonlinear quadratic functional integral equations, Electr. J. Qual. Theo. Differ. Equ. 10 (2008), 1–13.
[11] E.L. Ghasab, H. Majani, E. Karapinar, and G. Soleimani Rad, New fixed point results in F-quasi-metric spaces and an application, Adv. Math. Phys. 2020 (2020), 9452350.
[12] M.A. Khamsi, Remarks on Caristis fixed point theorem, Nonlinear Anal. 71 (2009), 227–231.
[13] Z. Li, Remarks on Caristis fixed point theorem and Kirk’s problem, Nonlinear Anal. 73 (2010), 3751–3755.
[14] S.B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475–488.
[15] V. Parvaneh, M. Khorshidi, and M. De La Sen, Measure of noncompactness and a generalized Darbo fixed point theorem and its applications to a system of integral equations, Adv. Differ. Equ. 2020 (2020), 243.
[16] J. Schauder, Der fixponktestatz in funktionalarumen, Studia Math. 2 (1930), 171–180.
[17] G. Soleimani Rad, S. Shukla, and H. Rahimi, Some relations between n-tuple fixed point and fixed point results, RACSAM. 109 (2015), 471–481.