[1] R.G. Bartle, A convergence theorem for generalized Riemann integrals, Real Anal. Exch. 20 (1994-95), no. 2, 119–124.
[2] R. Bongiorno, I. Di Piazza, and K. Musial, A decomposition theorem for the fuzzy Henstock integrals, Fuzzy Sets Syst. 200 (2012), 36–47.
[3] R. Goetschel and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets Syst. 18 (1986), 31–43.
[4] Z. Gong and Y, Shao The controlled convergence theorems for the strong Henstock integrals of fuzzy-number-valued functions, Fuzzy Sets Syst. 160 (2009), 1528–1546.
[5] R. Gordon, The Integral of Lebesgues, Denjoy, Perron and Henstock, Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1994.
[6] Z. Guang-Quan, Fuzzy continuous functions and its properties, Fuzzy Sets Syst. 43 (1991), 159–171.
[7] M.E. Hamid, A.H. Elmuiz, and M.E. Sheima, On AP-Henstock integral interval of valued functions and fuzzyvalued functions, Appl. Math. 7 (2016), no. 18, 2285–2295.
[8] R. Henstock, The General Theory of Integration, Oxford University Press, Oxford, UK, 1991.
[9] V.O. Iluebe and A.A. Mogbademu, Dominated and bounded convergence results of sequential Henstock Stieltjes integral in real valued space, J. Nepal Math. Soc. 3 (2020), no. 1, 17–20.
[10] V.O. Iluebe and A.A. Mogbademu, Equivalence of Henstock and certain sequential Henstock integral, Bangmond Int. J. Math. Comput. Sci. 1 (2020). no. 1-2, 9–16.
[11] V.O. Iluebe and A.A. Mogbademu, Equivalence of P-Henstock type, Ann. Math. Comput. Sci. 2 (2021), 15–22.
[12] K.A. Musial, A decomposition theorem for Banach space valued fuzzy Henstock integral, Fuzzy Sets Syst. 250 (2015), 21–28.
[13] L.A. Paxton, Sequential approach to the Henstock integral, arXiv preprint arXiv:1609.05454, 2016 - arxiv.org.
[14] C. Swartz, Introduction to Gauge Integrals, World Scientific, Singapore, 2001.
[15] A. Van der Schaft, A.E. Sterk, and R. Van Dijk, The Henstock-Kurzweil integral, Bachelor Thesis in Mathematics, Rijkuniversiteit Groningen, 2014.
[16] C.X. Wu, and Z.T. Gong, On Henstock integrals of interval-valued functions and fuzzy-valued functions, Fuzzy Set Syst. 115, (2016), 377-391.
[17] C.X. Wu and Z.T. Ming, On embedded problem of fuzzy number space: Part I, Fuzzy Set Syst. 44 (1991), 33–38.
[18] B.M.A. Uzzal, On convergence theorem for fuzzy Henstock integrals, Iran. J. Fuzzy Syst. 14 (2017), 87–102.
[19] X.Y. You and D. Zhao, On convergence theorems for the McShane integrals of interval-valued functions on time scale, J. Chungcheong Math. Soc. 25 (2012), 109–115.