[1] G. Ahmadi and M. Shahinpoor, Universal stability of magneto-micropolar fluid motions, Internat J. Engrg. Sci. 12 (1974), no. 7, 657–663.
[2] K.A. Bekmaganbetov and Y. Toleugazy, On the Order of the trigonometric diameter of the anisotropic Nikol’skiiBesov class in the metric of anisotropic Lorentz spaces, Anal. Math. 45 (2019), 237–247.
[3] C. Berselli and P. Galdi, Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations, Proc. Amer. Math. Soc. 130 (2002), no. 12, 3585–3595.
[4] T. Chen and W. Sun, Iterated weak and weak mixed-norm spaces with applications to geometric inequalities, J. Geom. Anal. 30 (2020), no. 4, 4268–4323.
[5] B. Dong, Y. Jia, and Z. Chen, Pressure regularity criteria of the three-dimensional micropolar fluid flows, Math. Meth. Appl. Sci. 34 (2011), no. 5, 595–606.
[6] H. Duan, On regularity criteria in terms of pressure for the 3D viscous MHD equations, Appl. Anal. 91 (2012), no. 5, 947–952.
[7] A.C. Eringen, Theory of micropolar fluids, J. Math. Mech. 16 (1996), no. 1, 1–18.
[8] L. Feng-Ping and C. Guang-Xia, Regularity criteria for weak solutions to the 3D magneto-micropolar fluid equations, J. SD. Univ. (Nat Sci.) 50 (2015), 60–67.
[9] G. Gala, Regularity criteria for the 3D magneto-micropolar fluid equations in the Morrey–Campanato space, Nonlinear Differ. Equ. Appl. 17 (2010), no. 2, 181—194.
[10] S. Gala, A remark on the logarithmically improved regularity criterion for the micropolar fluid equations in terms of the pressure, Math. Meth. Appl. Sci. 34 (2011), no. 34, 1945–1953.
[11] G.P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Int. J. Eng. Sci. 15 (1977), no. 2, 105–108.
[12] J. Geng, X. Chen, and S. Gala, On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space, Commun. Pure Appl. Anal. 10 (2011), no. 2, 583–592.
[13] Z. Guo, T. Tong, and W. Wang, On regularity of the 3D MHD equations based on one velocity component in anisotropic Lebesgue spaces, Appl. Math. Lett. 120 (2021), 1–7.
[14] Z. Guo and S. Zhang, An optimal regularity criterion for the 3D MHD equations in homogeneous Besov spaces, Math. Meth. Appl. Sci. 44 (2021), no. 2, 2130–2139.
[15] Y. Jia, W. Zhang, and B. Dong, Remarks on the regularity criterion of the 3D micropolar fluid flows in terms of the pressure, Appl. Math. Lett. 24 (2011), no. 2, 199–203.
[16] X. Jia and Y. Zhou, On Regularity Criteria for the 3D Incompressible MHD Equations Involving One Velocity Component, J. Math. Fluid Mech. 18 (2016), no. 1, 187–206.
[17] Z. Li and P. Niu, New regularity criteria for the 3D magneto-micropolar fluid equations in Lorentz spaces, Math. Meth. Appl. Sci. 44 (2021), no. 7, 6056–6066.
[18] G. Lukaszewicz, Micropolar Fluids: Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, 1st ed., Birkhauser Boston, New York, 1999.
[19] E. Mallea-Zepeda and E.E. Ortega-Torres, Control problem for a magneto-micropolar flow with mixed boundary conditions for the velocity field, J. Dyn. Control Syst. 25 (2019), no. 4, 599–618.
[20] W.G. Melo, The magneto-micropolar equations with periodic boundary conditions: solution properties at potential blow-up times, J. Math. Anal. Appl. 435 (2016), no. 2, 1194–1209.
[21] R. O’Neil, Convolution operators and L(p,q) spaces, Duke Math. J, 30 (1963), no. 1, 129–142.
[22] E.E. Ortega-Torres and M.A. Rojas-Medar, Rojas-Medar, Magneto-micropolar fluid motion: global existence of strong solutions, Abstr. Appl. Anal. 4 (1999), no. 2, 109–125.
[23] E.E. Ortega-Torres and M.A. Rojas-Medar, On the regularity for solutions of the micropolar fluid equations, Rend. Sem. Mat. Padova. 122 (2009), 27–37.
[24] M.A. Ragusa and F. Wu, Regularity criteria for the 3D magneto-hydrodynamics equations in anisotropic Lorentz spaces, Symmetry 13 (2021), no. 4, 1–10.
[25] M.A. Rojas-Medar and J.L. Boldrini, Magneto-micropolar fluid motion: Existence of weak solutions, Rev. Mat. Complut., 11 (1988), no. 2, 443–460.
[26] M.A. Rojas-Medar and M. Loazya, A weak-Lp Prodi-Serrin type regularity criterion for the micropolar fluid equations, J. Math. Phys. 57 (2016), no. 2, 1–6.
[27] P.B. Silva, L. Friz, and M.A. Rojas-Medar, Exponential stability for magneto-micropolar fluids, Nonlinear Anal. 143 (2016), 211–223.
[28] Z. Tan, W. Wu, and J. Zhou, Global existence and decay estimate of solutions to magneto-micropolar fluid equations, J. Differ. Equ. 266 (2019), no. 7, 4137–4169.
[29] F. Wu, A refined regularity criteria of weak solutions to the magneto-micropolar fluid equations, J. Evol. Equ. 21 (2021), no. 1, 725—734.
[30] X. Xu, Z. Ye and Z. Zhang, Remark on an improved regularity criterion for the 3D MHD equations, Appl. Math. Lett. 42 (2015), 41–46.
[31] B.Q. Yuan, On regularity criteria of weak solutions to the micropolar fluid equations in Lorentz space, Proc. Amer. Math. Soc. 138 (2010), no. 6, 2010–2025.
[32] B. Yuan and X. Li, Regularity of weak solutions to the 3D magneto-micropolar equations in Besov spaces, Acta Appl. Math. 163 (2019), no. 1, 207–223.
[33] Z. Zhang, Regularity criteria for the 3D MHD equations involving one current density and the gradient of one velocity component, Nonlinear Anal. 115 (2015), 41–49.
[34] Z. Zhang, Remarks on the global regularity criteria for the 3D MHD equations via two components, Z. Angew Math. 66 (2015), no. 3, 977–987.
[35] Y. Zhou, Regularity criteria for the 3D MHD equations in terms of the pressure, Int. J. Nonlinear Mech. 41 (2006), no. 10, 1174–1180.